Solitary Structures in Nonlinear Fields

  • J. A. Krumhansl


An overview of recent work in nonlinear fields is presented, with intent to provide a pedagogical introduction to the recent literature. The ideas reach into many branches of physics, chemistry, and continuum mechanics. The significant feature of strong nonlinearity is that spatially extended waves interact and organize into well-characterized, localized objects. The result is that objects like domain walls, dislocations, and such may be found. These structures rely on the nonlinearity inherent in the problem to such an extent that they can not be generated by a perturbation theory starting with a plane-wave basis. Most important, they have static and dynamic stability in a wide number of cases, and play a significant role in both the statistical and quantum mechanical descriptions of many physical systems.


Partition Function Domain Wall Solitary Wave Quantum Mechanical Description Solitary Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin, Proc. IEEE 61, 1443 (1973).MathSciNetADSCrossRefGoogle Scholar
  2. (2).
    G. L. Lamb and D. W. McLaughlin (unpublished).Google Scholar
  3. (3).
    R. Rajaraman, Physics Reports 21C, 229 (1975).ADSGoogle Scholar
  4. (4).
    J. Scott-Russell, Proc. Roy. Soc. Edinburgh, 319, (1844).Google Scholar
  5. (5).
    NSF Conference on Solitons, Tucson, Arizona (1976).Google Scholar
  6. (6).
    E. Fermi, J. R. Pasta, S. M. Ulam, Los Alamos Sci. Lab., Rep. LA-1940 (1955).Google Scholar
  7. (7).
    N. J. Zabusky, Comput. Phys. Commun. 5, 1 (1973).ADSCrossRefGoogle Scholar
  8. (8).
    J. K. Perring and T. H. Skyrme, Nucl. Phys., 31, 550 (1962).MathSciNetMATHCrossRefGoogle Scholar
  9. (9).
    A. Seeger, H. Donth, and A. Kochendörfer, Z. Phys., 134, 173 (1953).ADSMATHCrossRefGoogle Scholar
  10. (10).
    W. Döring, Z. Naturforschung, 31, 373 (1948).Google Scholar
  11. (11).
    R. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D11, 3424 (1975),MathSciNetADSGoogle Scholar
  12. (11a).
    S. Coleman, Phys. Rev. D11, 2088 (1975).ADSGoogle Scholar
  13. (12).
    A. C. Scott, Nuovo Cimento, 69B, 214 (1970).Google Scholar
  14. (13).
    M. J. Rice, A. R. Bishop, J. A. Krumhansl, and S. E. Trullinger, Phys. Rev. Lett, 36, 432 (1976).ADSCrossRefGoogle Scholar
  15. (14).
    L. D. Faddeev, L. A. Takhatajan, Uspekhi Math. Sci. 29, 249 (1974);Google Scholar
  16. (14a).
    L. D. Faddeev, L. A. Takhatajan, Theor. Math. Phys. 21, 160 (1974) (See also preprint JINR E27998 (1974)).Google Scholar
  17. (15).
    J. A. Krumhansl and J. R. Schrieffer, Phys. Rev. B11, 3535 (1975).ADSGoogle Scholar
  18. (16).
    T. R. Koehler, A. R. Bishop, J. A. Krumhansl, and J. R. Schrieffer, Solid State Commun., 17, 1515 (1975).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • J. A. Krumhansl
    • 1
  1. 1.Laboratory of Atomic and Solid State PhysicsCornell UniversityIthacaUSA

Personalised recommendations