Advertisement

Phase Separation in Rotating 3He-4He Solutions

  • W. I. Glaberson
  • R. M. Ostermeier

Abstract

It is by now well accepted that ions interact with vortex lines through a hydrodynamic potential of the sort first suggested by Donnelly.1 This potential is essentially the hydrodynamic kinetic energy deficit in the system associated with the presence of the ion in the vicinity of the vortex line. Donnelly1 and Donnelly and Roberts2 treated the capture of an ion by a vortex line by considering the ion as a Brownian particle immersed in a gas of quasiparticles and involved in a process of sedimentation into the vortex potential wells. These ideas lead to reasonable agreement with the experimental capture cross-section data obtained by Douglass,3 Tanner,4 and Springett, et al. 5—but only over a very narrow temperature region. At the higher temperatures, above ~1.6K, thermal activation out of the vortex well gives rise to an apparent cross-section much smaller than predicted (the temperature corresponding to the appearance of this phenomenon is termed the “lifetime edge”). At lower temperatures, below ~1.4K, the cross-section is also much smaller than predicted for reasons which, when we started our investigation, were not at all clear.6 We became interested in this anomaly and began a series of experiments to probe this problem as well as other details of the ion-vortex interaction.

Keywords

Vortex Ring Vortex Core Vortex Line Inverse Mobility Hydrodynamic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    R. J. Donnelly, Phys. Rev. Lett. 14, 39 (1965).ADSCrossRefGoogle Scholar
  2. (2).
    R. J. Donnelly and P. H. Roberts, Proc. Roy. Soc. A312, 519 (1969).ADSGoogle Scholar
  3. (3).
    R. C. Douglass, Phys. Rev. Lett. 13, 791 (1964).ADSCrossRefGoogle Scholar
  4. (4).
    D. J. Tanner, Phys. Rev. 152, 121 (1966).ADSCrossRefGoogle Scholar
  5. (5).
    B. E. Springett, D. J. Tanner, and R. J. Donnelly, Phys. Rev. Lett. 14, 585 (1965).ADSCrossRefGoogle Scholar
  6. (6).
    For a more complete discussion, see Experimental Superfluidity by R. J. Donnelly, W. I. Glaberson, and P. E. Parks (Univ. of Chicago Press, Chicago, Illinois, 1967).Google Scholar
  7. (7).
    R. M. Ostermeier and W. I. Glaberson, Phys. Letters 49A, 223 (1974).ADSGoogle Scholar
  8. (8).
    R. M. Ostermeier and W. I. Glaberson, J. Low Temp. Phys. 20, 159 (1975).ADSCrossRefGoogle Scholar
  9. (9).
    A. G. Cade, Phys. Rev. Lett. 15, 238 (1965);ADSCrossRefGoogle Scholar
  10. (9a).
    W. I. Glaberson and W. W. Johnson, J. Low Temp. Phys. 20, 313 (1975).ADSCrossRefGoogle Scholar
  11. (10).
    R. M. Ostermeier and W. I. Glaberson, Phys. Lett. 51A, 348 (1975).ADSGoogle Scholar
  12. (10a).
    Similar results were obtaind independently by G. A. Williams, K. DeConde, and R. E. Packard, Phys. Rev. Lett. 34, 924 (1975).ADSCrossRefGoogle Scholar
  13. (11).
    K. W. Schwarz and R. J. Donnelly, Phys. Rev. Lett. 17, 1088 (1966).ADSCrossRefGoogle Scholar
  14. (12).
    R. M. Ostermeier and W. I. Glaberson, Phys. Lett. 51A, 403 (1975).ADSGoogle Scholar
  15. (13).
    R. L. Douglass, Phys. Lett. 28A, 560 (1969).ADSGoogle Scholar
  16. (14).
    K. DeConde, G. A. Williams, and R. E. Packard, Phys. Rev. Lett. 33, 683 (1974).ADSCrossRefGoogle Scholar
  17. (15).
    G. A. Williams and R. E. Packard, Phys. Rev. Lett. 35, 237 (1975).ADSCrossRefGoogle Scholar
  18. (16).
    L. S. Rent and I. Z. Fisher, Soviet Physics-JETP 28, 375 (1969).ADSGoogle Scholar
  19. (17).
    T. Ohmi, T. Tsuneto, and T. Usui, Prog. Theor. Phys. 41, 1395 (1969).ADSCrossRefGoogle Scholar
  20. (18).
    For a more detailed description of the experiment and results, see R. M. Ostermeier, E. J. Yarmchuk and W. I. Glaberson, Phys. Rev. Lett. 35, 957 (1975);ADSCrossRefGoogle Scholar
  21. (18a).
    R. M. Ostermeier and W. I. Glaberson, J. Low Temp. Phys. 25, 317 (1976).ADSCrossRefGoogle Scholar
  22. (18b).
    Results above 1 K were reported by W. I. Glaberson, J. Low Temp. Phys. 1, 289 (1969).ADSCrossRefGoogle Scholar
  23. (19).
    K. W. Schwarz, Phys. Rev. A6, 1947 (1972).ADSGoogle Scholar
  24. (20).
    A. L. Fetter and I. Iguchi, Phys. Rev. A2, 2067 (1970);ADSGoogle Scholar
  25. (20a).
    I. Iguchi, Phys. Rev. A4, 2410 (1971).ADSGoogle Scholar
  26. (21).
    P. E. Parks and R. J. Donnelly, Phys. Rev. Lett. 16, 45 (1966).ADSCrossRefGoogle Scholar
  27. (22).
    T. Ohmi and T. Usui, Prog. Theor. Phys. 41, 1401 (1969).ADSCrossRefGoogle Scholar
  28. (23).
    K. N. Zinov’eva, Soviet Physics-JETP 17, 1235 (1963).Google Scholar
  29. (24).
    See reference 18; and W. Huang and A. J. Dahm, Phys. Rev. Lett. 36, 1466 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • W. I. Glaberson
    • 1
  • R. M. Ostermeier
    • 1
  1. 1.Department of PhysicsRutgers UniversityNew BrunswickUSA

Personalised recommendations