Static and Dynamic Textures in Superfluid 3He-A

  • Louis J. Buchholtz
  • Alexander L. Fetter


Static textures in confined superfluid 3He-A near Tc are studied with the Ginzburg-Landau free energy. Plane boundaries induce a uniform texture that becomes deformed at a critical perpendicular magnetic field; above that value, the mean super-fluid density measured in torsional oscillations decreases mono-tonically from \(\rho _s^ \bot \) to ρs ||. Cylindrical boundaries induce a flared texture, with a circulating current and an angular momentum per particle ≈ 0.782 hρs||/ρ; this configuration deforms continuously with increasing axial magnetic field up to a critical value, when a discrete transition takes place to a planar texture with neither current nor angular momentum. Leggett’s dynamical equations are generalized to incorporate static inhomogeneous textures, which then represent the zero-order solutions in the presence of a weak r-f field. The first-order response characterizes the various textures, which may permit an unambiguous experimental identification.


Orbital Angular Momentum Torsional Oscillation Total Free Energy Discrete Transition Axial Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. Balian and N. R. Werthamer, Phys. Rev. 131, 1553 (1963).ADSCrossRefGoogle Scholar
  2. (2).
    V. Ambegaokar, P. G. de Gennes, and D. Rainer, Phys. Rev. A 9, 2676 (1974); A 12, 245 (1975).Google Scholar
  3. (3).
    A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).ADSCrossRefGoogle Scholar
  4. (4).
    V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).Google Scholar
  5. (5).
    A. J. Leffett, Ann. Phys. 85, 11 (1974).ADSCrossRefGoogle Scholar
  6. (6).
    J. C. Wheatley, Rev. Mod. Phys. 47, 415 (1975).ADSCrossRefGoogle Scholar
  7. (7).
    P. G. de Gennes and D. Rainer, Phys. Lett. A 46, 429 (1974).ADSCrossRefGoogle Scholar
  8. (8).
    L. J. Buchholtz and A. L. Fetter, Phys. Lett. A 58, 93 (1976) and (to be published). As demonstrated in these papers, a general nonuniform texture in 3He-A requires two gap functions, Δ1 and Δ2; this subtlety has proved unnecessary for the present considerations.Google Scholar
  9. (9).
    V. Ambegaokar and D. Rainer (unpublished).Google Scholar
  10. (10).
    A. L. Fetter, Phys. Rev. B 14, 2801 (1976).ADSCrossRefGoogle Scholar
  11. (11).
    A. L. Fetter, Phys. Rev. B 15 (to be published).Google Scholar
  12. (12).
    J. E. Berthold, R. W. Giannetta, E. N. Smith, and J. D. Reppy, Phys. Rev. Lett. 37, 1138 (1976).ADSCrossRefGoogle Scholar
  13. (13).
    P. W. Anderson and W. F. Brinkman, in “The Helium Liquids”, edited by J. G. M. Armitage and I. E. Farquhar (Academic, London, 1975), Sec. VIII, pp. 406–413.Google Scholar
  14. (14).
    N. D. Mermin and T.-L. Ho, Phys. Rev. Lett. 36, 594 (1976).ADSCrossRefGoogle Scholar
  15. (15).
    P. G. de Germes, Phys. Lett. A 44, 271 (1973); in “Collective Properties of Physical Systems”, edited by B. Lundquist and S. Lundquist (Academic, New York, 1974), pp. 112–115.ADSCrossRefGoogle Scholar
  16. (16).
    S. Takagi, J. Phys. C8, 1507 (1975).ADSGoogle Scholar
  17. (17).
    H. Smith, W. F. Brinkman, and S. Engelsberg, Phys. Rev. B (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Louis J. Buchholtz
    • 1
  • Alexander L. Fetter
    • 1
  1. 1.Institute of Theoretical Physics, Department of PhysicsStanford UniversityStanfordUSA

Personalised recommendations