Possible “New” Quantum Systems — A Review

  • L. H. Nosanow


The current status of the theory of the possible “new” quantum systems, helium-six and spin-aligned hydrogen, is given. Results of ground-state calculations are combined with finite temperature experimental data to give an over-all view of quantum systems which obey both Bose-Einstein and Fermi-Dirac statistics. An essential feature of this work is the use of the quantum theorem of corresponding states, which allows one to treat the quantum parameter η = η2/mεσ2 as a “Conceptual” thermodynamic variable. In this context, the liquid-to-crystal and liquid-to-gas transitions are discussed for quantum systems and shown to be affected profoundly by the statistics. Further, the construction of the phase diagram for 6He and 6He-4He mixtures is reviewed and the possibility of detecting superfluid 6He is discussed. Finally, the predicted properties of spin-aligned hydrogen are reviewed and a brief discussion of the experimental problem of preparing it is given.


Quantum System Quantum Parameter Fermi System Bose System Nuclear Spin State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. V. Dugan, Jr. and R. D. Etters, J. Chem. Phys. 59, 6171 (1973);ADSCrossRefGoogle Scholar
  2. (1a).
    R. D. Etters, J. V. Dugan, Jr. and R. W. Palmer, J. Chem. Phys. 62, 313 (1975);ADSCrossRefGoogle Scholar
  3. (1b).
    R. D. Etters, Phys. Letters 42A, 439 (1973);ADSGoogle Scholar
  4. (1c).
    R. L. Danilowicz, J. V. Dugan, and R. D. Etters, J. Chem. Phys.. 65, 498 (1976). We shall refer to these references collectively as DEP.ADSCrossRefGoogle Scholar
  5. (2).
    W. C. Stwalley and L. H. Nosanow, Phys. Rev. Letters 36, 910 (1976).ADSCrossRefGoogle Scholar
  6. (3).
    W. C. Stwalley, Phys. Rev. Letters 37, 1628 (1976).ADSCrossRefGoogle Scholar
  7. (4).
    M. D. Miller and L. H. Nosanow, Phys. Rev. B, to be published.Google Scholar
  8. (5).
    L. H. Nosanow, J. Low Temp. Phys., 23, 605 (1976).ADSCrossRefGoogle Scholar
  9. (6).
    J. T. Jones, M. H. Johnson, H. L. Mayer, S. Katz and R. S. Wright, Aeronutronics Systems, Inc. Publ. No. U-216 (1958), unpublished.Google Scholar
  10. (7).
    M. W. Windsor, in “Formation and Trapping of Free Radicals,” edited by A. M. Bass and H. P. Broida (Academic Press, New York, 1960), p. 400f.Google Scholar
  11. (8).
    R. Hess, Adv. Cryog. Eng. 18, 427 (1973);Google Scholar
  12. (8a).
    R. Hess, doctoral dissertation, University of Stuttgart, 1973 (unpublished); and Deutsche Luft-und Raumfahrt, Forschungsbericht 73–74: Atomarer Wasserstaff (Institut fur Energie Wandlung und Elektrische Antriebe, Stuttgart/Braunschweig, 1973); W. Perhka, private communication.Google Scholar
  13. (9).
    L. Guttman and J. R. Arnold, Phys. Rev. 92, 547 (1953).ADSCrossRefGoogle Scholar
  14. (10).
    R. Packard, private communication.Google Scholar
  15. (11).
    W. C. Stwalley, following paper.Google Scholar
  16. (12).
    L. H. Nosanow, L. J. Parish and F. J. Pinski, Phys. Rev. B 11, 191 (1975); we refer to this paper as NPP.ADSGoogle Scholar
  17. (13).
    M. D. Miller, L. H. Nosanow and L. J. Parish, Phys. Rev. Letters 35, 581 (1975);ADSCrossRefGoogle Scholar
  18. (13a).
    M. D. Miller, L. H. Nosanow and L. J. Parish, Phys. Rev. B 15, 214 (1977); we refer to this work as MNP.ADSCrossRefGoogle Scholar
  19. (14).
    L. H. Nosanow, J. Low Temp. Phys. 26, 613 (1977).ADSCrossRefGoogle Scholar
  20. (15).
    J. de Boer, Physica 14, 139 (1948).ADSCrossRefGoogle Scholar
  21. (16).
    J. de Boer and B. S. Blaisse, Physica 14, 149 (1948)Google Scholar
  22. (16a).
    J. de Boer and R. J. Limbeck, Physica 14, 520 (1948).ADSCrossRefGoogle Scholar
  23. (17).
    W. Kolos and L. Wolniewicz, Chem. Phys. Letters 24, 457 (1974)Google Scholar
  24. (17a).
    W. Kolos and L. Wolniewicz J. Mol. Spectrosc. 54, 303 (1975).ADSCrossRefGoogle Scholar
  25. (18).
    This behavior is exhibited clearly on Fig. 7 of MNP.Google Scholar
  26. (19).
    A. Fetter, private communication.Google Scholar
  27. (20).
    J. Ruvalds, private communication.Google Scholar
  28. (21).
    M. Suzuki, Prog. Theor. Phys. 56, 77 (1976).ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • L. H. Nosanow
    • 1
  1. 1.Division of Materials ResearchNational Science FoundationUSA

Personalised recommendations