Transverse Zero Sound in Normal 3He

  • Pat R. Roach
  • J. B. Ketterson


We have measured the complex acoustic shear impedance of liquid 3He by observing the decay of a transiently excited AC cut quartz transducer. Comparison with recent theories suggests that our results at low temperatures can only be due to the excitation of transverse zero sound. We have also observed the direct transmission of transverse excitations between two closely spaced transducers in the vicinity of 3 mK. These results are analyzed in terms of the propagation of transverse zero sound although theory suggests that a single-particle contribution must also be present.


Acoustic Impedance Transverse Mode Sound Mode Receiver Input Zero Sound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    L. D. Landau, Zh. Eksp. Teor. Phys. 30, 1058 (1956);Google Scholar
  2. (1a).
    L. D. Landau, Zh. Eksp. Soviet Phys. JETP 3, 591 (1956).Google Scholar
  3. (2).
    L. D. Landau, Zh. Eksp. Teor. Phys. 32, 59 (1957);Google Scholar
  4. (2a).
    L. D. Landau, Zh. Eksp. Soviet Phys. JETP 5, 101 (1957).MATHGoogle Scholar
  5. (3).
    B. E. Keen, P. W. Matthews, and J. Wilks, Phys. Letters 5, 5 (1963); ]ADSCrossRefGoogle Scholar
  6. (3a).
    D. S. Betts, B. E. Keen, and J. Wilks, Proc. Roy. Soc. A 289, 34 (1965);ADSCrossRefGoogle Scholar
  7. (3b).
    I. J. Kirby and J. Wilks, Phys. Letters A 24, 60 (1966).ADSCrossRefGoogle Scholar
  8. (4).
    W. R. Abel, A. C. Anderson, and J. C. Wheatley, Phys. Rev. Letters 17, 74 (1966).ADSCrossRefGoogle Scholar
  9. (5).
    L. R. Corruccini, J. S. Clarke, N. D. Mermin, and J. W. Wilkins, Phys. Rev. 180, 225 (1969).ADSCrossRefGoogle Scholar
  10. (6).
    M. J. Lea, A. R. Birks, P. M. Lee, and E. R. Dobbs, J. Phys. C: Solid State Phys. 6, L226 (1973).ADSCrossRefGoogle Scholar
  11. (7).
    I. A. Fomin, Ah. Eksp. Teor. Phys. 54, 1881 (1968);Google Scholar
  12. (7a).
    I. A. Fomin, Ah. Eksp. Soviet Physics JETP 27, 1010 (1968).ADSGoogle Scholar
  13. (8).
    E. G. Flowers and R. W. Richardson, (to be published).Google Scholar
  14. (9).
    I. A. Fomin, Pis’ma Zh. Eksp. Teor. Phys. 24, 90 (1976).Google Scholar
  15. (10).
    E. G. Flowers, R. W. Richardson, and S. J. Williamson, Phys. Rev. Letters 37, 309 (1976).ADSCrossRefGoogle Scholar
  16. (11).
    Pat R. Roach and J. B. Ketterson, Phys. Rev. Letters 36, 736 (1976).ADSCrossRefGoogle Scholar
  17. (12).
    J. C. Wheatley, Rev. Mod. Phys. 47, 415 (1975).ADSCrossRefGoogle Scholar
  18. (13).
    M. P. Bertinat, D. S. Betts, D. F. Brewer, and G. J. Butterworth, J. Low Temp. Phys. 16, 479 (1974).ADSCrossRefGoogle Scholar
  19. (14).
    T. A. Alvesalo, H. K. Collan, M. T. Loponen, O. V. Lounasmaa and M. C. Veuro, J. Low Temp. Phys. 19, 1 (1975).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Pat R. Roach
    • 1
  • J. B. Ketterson
    • 1
    • 2
  1. 1.Argonne National LaboratoryArgonneUSA
  2. 2.Northwestern UniversityEvanstonUSA

Personalised recommendations