Some Effects of Radiation Trapping on Stimulated VUV Emission in Ar XIII

  • K. G. Whitney
  • J. Davis
  • J. P. Apruzese


The transient emission of VUV laser radiation from the carbon-like ionization stage of a laser-heated argon plasma is calculated. The plasma is taken to be spherical in shape, of uniform ion density, and to be uniformly heated by short pulses of laser energy, which are absorbed by the plasma electrons.Excitation of the carbon-like ionization stage is controlled by the trapping of resonance line radiation within the ionization stage. Two resonance lines, along with the VUV laser line, are self-consistently coupled to the rate equations describing the excitation dynamics of the argon plasma. Some effects of this coupling on the output of amplified spontaneous VUV emission are determined by comparing population densities, gain coefficients, and VUV laser power output as functions of time for a number of different cases in which the amount of radiation coupling to the plasma is varied.


Population Inversion Gain Coefficient Radiation Transport Ionization Stage Radiation Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    P. J. Mallozzi, H. M. Epstein, R. G. Jung, D. C. Applebaum,B. P. Fairand, and W. J. Gallagher, “Fundamental and Applied Laser Physics,” edited by M. S. Feld, A. Javan, and N. A.Kurnit (Wiley, New York, 1971), p. 165.Google Scholar
  2. (2).
    K. G. Whitney and J. Davis, J. Appl. Phys. 45, 5294 (1974).ADSCrossRefGoogle Scholar
  3. (3).
    F. E. Irons, J. Phys. B 8, 3044 (1975).ADSGoogle Scholar
  4. (4).
    (4) L. F. Chase, W. C. Jordan, J. D. Perez, and J. G. Pronko,Appl. Phys. Lett. 30, 137 (1977).ADSCrossRefGoogle Scholar
  5. (5).
    P. Kaw, G. Schmidt, and T. Wilcox, Phys. Fluids 16, 1522(1973).ADSCrossRefGoogle Scholar
  6. (6).
    M. D. Feit and J. A. Fleck, Jr., Appl. Phys. Lett. 28, 121(1976); M. D. Feit and D. E. Maiden, Appl. Phys. Lett. 28,331 (1976).ADSCrossRefGoogle Scholar
  7. (7).
    N. G. Loter, D. R. Cohn, W. Halverson, and B. Lax, J. Appl.Phys. 46, 3302 (1975).ADSCrossRefGoogle Scholar
  8. (8).
    K. Lee, D. Forslund, J. Kindel, and E. Lindeman, Phys.Fluids 20, 51 (1977).ADSCrossRefGoogle Scholar
  9. (9).
    B. H. Ripin, J. M. McMahon, E. A. McLean, W. M. Manheimer,and J. A. Stamper, Phys. Rev. Lett. 32, 634 (1974); B. H.Ripin, Appl. Phys. Lett. 30, 134 (1977), W. M. Manheimer,D. G. Colombant, and B. H. Ripin NRL Report 3426 (1976)to be published.ADSCrossRefGoogle Scholar
  10. (10).
    D. W. Forslund, J. M. Kindel, K. Lee, E. L. Lindman and R. L.Morse, Phys. Fluids 11, 679 (1975); E. G. Estabrook; E. J.Valeo, and W. L. Kruer, Phys. Fluids 18, 1151 (1975).Google Scholar
  11. (11).
    G. J. Pert and S. A. Ramsden, Opt. Commun. 11, 270 (1974).ADSCrossRefGoogle Scholar
  12. (12).
    E’ Ya Kononov and K. N. Koshelev, Sov. J. Quant. Electron 4,1340 (1975).ADSCrossRefGoogle Scholar
  13. (13).
    B. A. Norton and N. J. Peacock, J. Phys. B 8, 989 (1975).ADSGoogle Scholar
  14. (14).
    A. G. Molchanov, Sov. Phys. Uspekhi 15, 124 (1972).ADSCrossRefGoogle Scholar
  15. (15).
    F. E. Irons and N. J. Peacock, J. Phys. B 7, 1109 (1974).ADSGoogle Scholar
  16. (16).
    R. J. Dewhurst, D. Jacoby, G. J. Pert, and S. A. Ramsden,Phys. Rev. Lett. 37, 1265 (1976).ADSCrossRefGoogle Scholar
  17. (17).
    P. K. Cheo and H. G. Cooper, J. Appl. Phys. 36, 1862 (1965);Appl. Phys. Lett. 7, 202 (1965).ADSCrossRefGoogle Scholar
  18. (18).
    R. Pappalardo, J. Appl. Phys. 45, 3547 (1974).ADSCrossRefGoogle Scholar
  19. (19).
    W. B. Bridges and A. N. Chester, IEEE J. Quant. Elect.QE-1, 66 (1965); W. B. Bridges and A. N. Chester, IEEE J.Quant. Elec. QE-1, 66 (1965); W. B. Bridges, A. N. Chester,A. S. Halstead, and J. V. Parker, Proc. IEEE 59, 724 (1971).ADSCrossRefGoogle Scholar
  20. (20).
    C. K. Rhodes, IEEE J. Quant. Elec. QE-10, 153 (1974).MathSciNetADSCrossRefGoogle Scholar
  21. (21).
    J. Davis and K. G. Whitney, Appl. Phys. Lett. 29, 419 (1976).ADSCrossRefGoogle Scholar
  22. (22).
    L. J. Palumbo and R. C. Elton, JOSA (to be published).Google Scholar
  23. (23).
    J. Davis and K. G. Whitney, J. Appl. Phys. 47, 1426 (1976);J. P. Apruzese, J. Davis, and K. G. Whitney, J. Appl. Phys.48, 667 (1977).ADSCrossRefGoogle Scholar
  24. (24).
    S. I. Braginskii, “Reviews of Plasma Physics,” edited byM. A. Leontovich (Consultants Bureau, New York, 1965), p. 205.Google Scholar
  25. (25).
    S. Chandrasekhar, “Radiative Transfer” (Clarendon Press,Oxford, 1950), p. 23.MATHGoogle Scholar
  26. (26).
    D. G. Hummer, C. V. Kunasz, and P. B. Kunasz, Comp. Phys.Comm. 6, 38 (1973); P. B. Kunasz and D. G. Hummer, MNRAS166, 19 (1974).ADSCrossRefGoogle Scholar
  27. (27).
    T. R. Young and J. P. Boris, NRL Report No. 2611, 1973(unpublished).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • K. G. Whitney
    • 1
  • J. Davis
    • 2
  • J. P. Apruzese
    • 1
  1. 1.Science Applications, Inc.ArlingtonUSA
  2. 2.Naval Research LaboratoryUSA

Personalised recommendations