Single-Pulse Superfluorescence in Cesium

  • Q. H. F. Vrehen


Superfluorescence has been observed at 2931 nm from the 7P3/2, to 7S1/2, transition in cesium. It is shown that a completely inverted two-level system can be prepared in a magnetic field. Experimental results on the superfluorescent output are reported for a range of sample lengths (1.0 cm to 5.0cm)and densities (8 × 109 cm−3 to 2 × 1011 cm−3 ) and for several values of the inhomogeneous dephasing time (5 ns, 18 ns, and 32 ns). For sufficiently long delay times the emission from the pencil-shaped volume of Fresnel number one consists of a single pulse for all sample lengths, both in an atomic beam and in a cell. Neither homogeneous relaxation nor inhomogeneous dephasing can explain the absence of ringing. For increased densities and reduced delay times, depending on the length of the sample,multiple-pulse output occurs. The occurrence of single and multiple pulses, the delay times, and the pulsewidths are discussed.


Delay Time Pulse Shape Single Pulse Atomic Beam Sample Length 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. H. Dicke, Phys. Rev. 93, 99 (1954).ADSCrossRefMATHGoogle Scholar
  2. (2).
    N. E. Rehler and J. H. Eberly, Phys. Rev. A 3, 1735 (1971).MathSciNetADSCrossRefGoogle Scholar
  3. (3).
    R. Bonifacio, P. Schwendimann, and F. Haake, Phys. Rev. A 4,302 and 854 (1971) and references therein.Google Scholar
  4. (4).
    N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld, Phys. Rev, Lett. 30, 309 (1973); I. P. Herman,J. C. MacGillivray, N. Skribanowitz, and M. S. Feld inLaser Spectroscopy, R. G. Brewer and A. Mooradian, editors(Plenum, N.Y. 1974).ADSCrossRefGoogle Scholar
  5. (5).
    J. C. MacGillivray and M. S. Feld, Phys. Rev. A 14, 1169(1976).ADSCrossRefGoogle Scholar
  6. (6).
    R. Bonifacio and L. A. Lugiato, Phys. Rev. A 11, 1507(1975) and 12, 587 (1975).ADSCrossRefGoogle Scholar
  7. (7).
    M. Gross, C. Fabre, P. Pillet, and S. Haroche, Phys. Rev.Lett. 36, 1035 (1976).ADSCrossRefGoogle Scholar
  8. (8).
    A. Flusberg, T. Mossberg, and S. R. Hartmann, Phys. Lett.58A, 373 (1976).ADSGoogle Scholar
  9. (9).
    A. Eranian, P. Dezauzier and O. De Witte, Optics Commun.7, 150 (1973); A. Andreoni, P. Benetti, and C. A. Sacchi,Appl. Phys. 7, 61 (1975); B. Bölger, L. Baede and H. M.Gibbs, Optics. Commun. 19, 346 (1976).ADSCrossRefGoogle Scholar
  10. (10).
    R. E. Honig, RCA Review 23, 567 (1962); D. R. Stull inAmerican Institute of Physics Handbook, D. E. Gray,editor (McGraw-Hill, N.Y., 1972), p. 4–298.Google Scholar
  11. (11).
    N. F. Ramsey, Molecular Beams (Oxford University Press,Oxford, 1956).Google Scholar
  12. (12).
    The collision cross-section for Cs-Ar collisions is as large as 572 × 10−16 cm2 (ref. 11, p. 34). In view of the larger polarizability of Cs as compared to Ar, the cross-section for Cs-Cs collisions can be estimated at 1 × 10−13 cm2. Apressure of 10 torr, corresponding to a density of 1.3 × 1017 cm−3, then yields a mean free path of 0.6 × 10−4 cm.Google Scholar
  13. (13).
    J. B. Anderson in Molecular Beams and Low Density Gas Dynamics, P. P. Wegner, editor (Marcel Dekker, N.Y., 1974).Google Scholar
  14. (14).
    A. Kantrowitz and J. Grey, Rev. Sci. Instr. 22, 328 (1951).ADSCrossRefGoogle Scholar
  15. (15).
    D. C. Burnham and R. Y. Chiao, Phys. Rev. 188, 667 (1969).ADSCrossRefGoogle Scholar
  16. (16).
    Following Rehler and Eberly, ref. 2, Banfi and Bonifacio have used the relation τd = τR lnμN, where μ is the geometrical shape factor of ref. 2. Inclusion of the factor μ in the logarithm reduces the delay time by roughly a factor of 2 in the present experiment. G. Banfi and R. Bonifacio, Phys. Rev. A. 12, 2068 (1975).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Q. H. F. Vrehen
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations