Quantum Beat Superfluorescence in Cs

  • Hyatt M. Gibbs


Superfluorescence has been observed at 3 μm on the 7P to 7S transition in atomic cesium after 2 ns excitation of a 6S to 7P transition. It is shown that this transition is near ideal for studying superfluorescence. Under some conditions, however, the high degeneracy of Cs leads to excitation of several levels or superfluorescence of independent transitions. This gives rise to interference beats which have been observed with and without a magnetic field. The beat frequencies correspond not only to initial level splittings but also to combinations of initial and final level splittings. Superfluorescence beats are therefore basically different from single-atom quantum beats. Possibilities for spectroscopic applications of superfluorescence beats are also discussed.


Atomic Beam Beat Frequency Radiative Lifetime Quantum Beat Dephasing Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. H. Dicke, Phys. Rev. 93, 99 (1954).ADSCrossRefMATHGoogle Scholar
  2. (2).
    N. E. Rehler and J. H. Eberly, Phys. Rev. A 3, 1735 (1971).MathSciNetADSCrossRefGoogle Scholar
  3. (3).
    R. Bonifacio, P. Schwendimann, and F. Haake, Phys. Rev. A 4,302 and 854 (1971) and references therein.ADSGoogle Scholar
  4. (4).
    N. Skribanowitz, I. P. Herman, J. C. MacGillivray, andM. S. Feld, Phys. Rev. Lett. 30, 309 (1973). I. P. Herman,J. C. MacGillivray, N. Skribanowitz, and M. S. Feld inLaser Spectroscopy, R. G. Brewer and A. Mooradian, editors(Plenum, NY, 1974). J. C. MacGillivray and M. S. Feld,Phys. Rev. A 14, 1169 (1976).ADSCrossRefGoogle Scholar
  5. (5).
    R. Bonifacio and L. A. Lugiato, Phys. Rev. A 11, 1507 (1975)and 12, 587 (1975).ADSCrossRefGoogle Scholar
  6. (6).
    F. T. Arecchi and E. Courtens, Phys. Rev. A 2, 1730 (1970).ADSCrossRefGoogle Scholar
  7. (7).
    R. Friedberg, S. R. Hartmann, and J. T. Manassah, Phys.Lett. 40A, 365 (1972). R. Friedberg and S. R. Hartmann,Opt. Commun. 10, 298 (1974).ADSGoogle Scholar
  8. (8).
    The integral given in Ref. 2 for μ for a circular cylinderhas been numerically integrated yielding for a length of 2 cm,λ = 2931 nm and a Fresnel number A/λL of 1 the value0.78 (3λ2/8πA).Google Scholar
  9. (9).
    R. Friedberg and S. R. Hartmann, Phys. Rev. A 13, 495 (1976).ADSCrossRefGoogle Scholar
  10. (10).
    L. Allen and J. H. Eberly, Optical Resonance and Two-LevelAtoms (John Wiley, 1975). Chapter 8 is a good introductionto superradiance.Google Scholar
  11. (11).
    D. C. Burnham and R. Y. Chiao, Phys. Rev. 188, 667 (1969).ADSCrossRefGoogle Scholar
  12. (12).
    R. E. Slusher and H. M. Gibbs, Phys. Rev. A 5, 1634 (1972).ADSCrossRefGoogle Scholar
  13. (13).
    O. S. Heavens, J. Opt. Soc. Am. 51, 1058 (1961).ADSCrossRefGoogle Scholar
  14. (14).
    S. Svanberg and S. Rydberg, Z. Physik 227, 216 (1969).ADSCrossRefGoogle Scholar
  15. (15).
    P. W. Pace and J. B. Atkinson, Can. J. Phys. 53, 937 (1975).ADSCrossRefGoogle Scholar
  16. (16).
    Reviewed by S. Haroche in K. Shimoda, ed., High ResolutionLaser Spectroscopy (Springer Verlag, 1976). For quantumbeats in limited superradiance such as photon echoes see:A. Compaan, L. Q. Lambert, and I. D. Abella, Phys. Rev. A 8,1641 (1973); P. F. Liao, P. Hu, R. Leigh, and S. R. Hartmann,Phys. Rev. A 9, 332 (1974); R. L. Shoemaker and F. A. Hopf,Phys. Rev. Lett. 33, 1527 (1974). Beats in SF or superradianceare discussed in J. H. Eberly, Lettere al NuovoCimento 1, 182 (1971). See also I. R. Senitzky, Phys. Rev.Lett. 35, 1755 (1975). For the absence of single-atom lowerstatebeats, see, in particular, W. W. Chow, M. O. Scully,J. O. Stoner, Jr., Phys. Rev. A 11, 1380 (1975).Google Scholar
  17. (17).
    S. Haroche, J. A. Paisner, and A. L. Schawlow, Phys. Rev.Lett. 30, 948 (1973) and J. A. Paisner, Thesis, StanfordUniversity, 1974.ADSCrossRefGoogle Scholar
  18. (18).
    This agrees with a calculation by H. J. Andrä, privatecommunication. See also Ref. 17.Google Scholar
  19. (19).
    Beats were seen for linearly polarized D1 excitation anddetection even though they are not predicted for a singleatom, under the usual assumptions of a nonsaturatingexcitation broad compared with the state separation. Ournear-saturation and near-transform-limited (300 to 500 MHzwidth) pulses often violated these assumptions, invalidatingthe summation leading to this selection rule.Google Scholar
  20. (20).
    Cs hyperfine structures: 62S1/2, M. Arditi and T. R. Carver,Phys. Rev. 109, 1012 (1958); 72S1/2, R. Gupta, W. Happer,L. K. Lam, and S. Svanberg, Phys. Rev. A 8, 2792 (1973);72P1/2, H. Bucka, Z. Physik 151, 328 (1958); 72P3/2, H. Bucka,H. Kopfermann, and E. W. Otten, Ann. Physik (7) 4, 39 (1959).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Hyatt M. Gibbs
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations