Experiments in Fir Superradiance

  • A. T. Rosenberger
  • S. J. Petuchowski
  • T. A. DeTemple


The occurrence of superradiance in the far infrared has been extended to the homogeneously broadened regime with the observation of delayed single-pulse emission in methyl fluoride at 496 μm. The delay, width, intensity, and asymmetry of the observed pulses are compared with the predictions of several theoretical models. Reasonable quantitative agreement is found with a Maxwell-Bloch mean-field model and a Maxwell-Bloch model including unidirectional propagation. The relation of the observations to steadystate superradiance and the contraction of the emitted pulse is discussed.


Pump Pulse Fresnel Number Pendulum Equation Superradiant Pulse Reasonable Quantitative Agreement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. H. Dicke, Phys. Rev., 93, 99 (1954).ADSCrossRefMATHGoogle Scholar
  2. (2).
    F. T. Arecchi and E. Courtens, Phys. Rev. A., 2, 1730 (1970).ADSCrossRefGoogle Scholar
  3. (3).
    N. E. Rehler and J. H. Eberly, Phys. Rev. A., 3, 1735 (1971).MathSciNetADSCrossRefGoogle Scholar
  4. (4).
    C. R. Stroud, Jr., J. H. Eberly, W. L. Lama, and L. Mandel,Phys. Rev. A., 5, 1094 (1972).ADSCrossRefGoogle Scholar
  5. (5).
    R. Jodoin and L. Mandel, Phys. Rev., 9, 873 (1974).ADSCrossRefGoogle Scholar
  6. (6).
    R. Friedberg and S. R. Hartmann, Phys. Rev. A., 10, 1728 (1974).ADSCrossRefGoogle Scholar
  7. (7).
    R. Bonifacio and L. A. Lugiato, Phys. Rev. A., 11, 1507 (1975).ADSCrossRefGoogle Scholar
  8. (8).
    J. C. MacGillivray and M. S. Feld, Phys. Rev. A., 14, 1169(1976).ADSCrossRefGoogle Scholar
  9. (9).
    R. Bonifacio, F. A. Hopf, P. Meystre, and M. O. Scully, Phys.Rev. A., 12, 2568 (1975).ADSCrossRefGoogle Scholar
  10. (10).
    N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S.Feld, Phys. Rev. Lett., 30, 309 (1973).ADSCrossRefGoogle Scholar
  11. (11).
    T. Y. Chang and T. J. Bridges, Opt. Commun., 1, 423 (1970).ADSCrossRefGoogle Scholar
  12. (12).
    T. A. DeTemple, T. K. Plant, and P. D. Coleman, Appl. Phys.Lett., 22, 644 (1973); T. K. Plant, L. A. Newman, E. J.Danielewicz, T. A. DeTemple, and P. D. Coleman, IEEE Trans.Microwave Theory and Tech., MTT-22, 988 (1974).ADSCrossRefGoogle Scholar
  13. (13).
    T. K. Plant and T. A. DeTemple, J. Appl. Phys., 47, 3042 (1976).ADSCrossRefGoogle Scholar
  14. (14).
    A. T. Rosenberger, S. J. Petuchowski, and T. A. DeTemple,Conference Digest, Second International Conference and WinterSchool on Submillimeter Waves and Their Applications, San Juan,Dec. 6–11, 1976, and to be published.Google Scholar
  15. (15).
    S. J. Petuchowski, A. T. Rosenberger, and T. A. DeTemple,to be published in IEEE J. Quantum Electron., June, 1977.Google Scholar
  16. (16).
    T. A. DeTemple and E. J. Danielewicz, IEEE J. QuantumElectron., QE-12, 40 (1976); R. L, Shoemaker, S. Stenholm,and R. G. Brewer, Phys. Rev. A., 10, 2037 (1974).ADSCrossRefGoogle Scholar
  17. (17).
    R. I. Rudko, IEEE J. Quantum Electron., QE-11, 540 (1975).Google Scholar
  18. (18).
    E. Yablonovitch, Phys. Rev. A., 10, 1888 (1974); H. S. Kwokand E. Yablonovitch, Appl. Phys. Lett., 27, 583 (1975).ADSCrossRefGoogle Scholar
  19. (19).
    Although the FIR is not completely polarized, the other componentof polarization will be trapped by multiple reflectionand absorption, and will not continue to feedback. Theinfluence of introduced feedback has been observed, allowingus to claim that the feedback in our experiment wasnegligible.Google Scholar
  20. (20).
    P. Norton, J. Appl. Phys., 47, 308 (1976); Phys. Rev. Lett.,37, 164 (1976).ADSCrossRefGoogle Scholar
  21. (21).
    This density corresponds to an excitation of 14.2% of theavailable ground state population. This is only slightlyless than the theoretical maximum of 16.7% for a linearly polarized pump.Google Scholar
  22. (22).
    This has been discussed by E. Ressayre and A. Tallet, Phys.Rev. Lett., 37, 424 (1976).ADSCrossRefGoogle Scholar
  23. (23).
    R. Friedberg and B. Coffey, Phys. Rev. A., 13, 1645 (1976).ADSCrossRefGoogle Scholar
  24. (24).
    R. Bonifacio, L. A. Lugiato, and A. Airoldi Crescentini,Phys. Rev. A., 13, 1648 (1976).ADSCrossRefGoogle Scholar
  25. (25).
    Re will be a factor of 10 larger than its normal thermal value due to the population trapping effect discussed earlier.Google Scholar
  26. (26).
    See Ref. 8 and R. Saunders, S. S. Hassan, and R. K. Bullough,J. Phys. A., 9, 1725 (1976); see also the articles by Bullough and Feld in this volume.MathSciNetADSGoogle Scholar
  27. (27).
    In these experiments, only 5% of the initially excited molecules contribute to the pulse due to the fact that the pulse delays are ∿ 3 T1. However, because of the geometric scaling behavior of Ts, under the appropriate conditions damping becomes sufficiently small to allow nearly full extraction of the initial excitation energy even in the non-steady state regime; see Eq. (19) and the discussion following.Google Scholar
  28. (28).
    F. Hopf, P. Meystre, and D. W. McLaughlin, Phys. Rev. A.,13, 777 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • A. T. Rosenberger
    • 1
  • S. J. Petuchowski
    • 1
  • T. A. DeTemple
    • 2
  1. 1.Department of PhysicsUniversity of IllinoisUSA
  2. 2.Department of Electrical EngineeringUniversity of IllinoisUSA

Personalised recommendations