Dynamics of Chemisorption and Heterogeneous Reactions

  • George WolkenJr.


The dynamics of molecular collisions emphasize the individual microscopic encounters between molecules. The parameters of interest are collision energy, internal states of reactants and products, and cross-sections for the formation of various products. The detailed description of molecular collision has led to a Golden Rule of Chemical Dynamics:(1) NOT ALL FORMS OF ENERGY ARE EQUAL. When energy is released in a chemical reaction, it tends to go into certain places (internal molecular motion of some kind, or translation) rather than others. If this preferential energy disposal can be monitored before the products collide further and distribute the energy elsewhere, much interesting information about the collision dynamics can be obtained. If enough energy can be deposited in vibration, and the excited states do not decay too rapidly by subsequent collisions, high-power chemical lasers can be constructed.


Impact Parameter Vibrational Level Heterogeneous Reaction Adsorbed Atom Translational Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. B. Bernstein and R. D. Levine, “Molecular Reaction Dynamics,” Oxford University Press, 1974.Google Scholar
  2. (2).
    J. K. Cashion and J. C. Polanyi, “Proc. Roy. Soc. (London) A 258, 529 (1960).Google Scholar
  3. (3).
    J. C. Polanyi, J. Chem. Phys, 34, 347 (1961).CrossRefGoogle Scholar
  4. (4).
    J. C. Polanyi and S. D. Rosner, J. Chem. Phys, 38, 1028 (1963).CrossRefGoogle Scholar
  5. (5).
    P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, S. D. Rosner, and C. E. Young, J. Chem. Phys. 44, 1168 (1966).CrossRefGoogle Scholar
  6. (6).
    J. V. Kasper and G. C. Pimentel, Phys. Rev. Letters. 14, 352 (1965).CrossRefGoogle Scholar
  7. (7).
    H. S. Johnston, “Gas Phase Reaction Rate Theory,” The Ronald Press Co., N.Y., (1966) p. 177.Google Scholar
  8. (8).
    J. H. McCreery and G. Wolken, Jr., J. Chem. Phys. 63, 4072 (1975).CrossRefGoogle Scholar
  9. (9).
    H. Eyring, J. Walter and G. E. Kimball, “Quantum Chemistry” (Wiley, New York, 1944) pp. 232–248.Google Scholar
  10. (10).
    J. H. McCreery and G. Wolken, Jr., J. Chem. Phys. 63, 4972 (1975).Google Scholar
  11. (11).
    J. H. McCreery and G. Wolken, Jr., J. Chem. Phys. 64, 2845 (1976).CrossRefGoogle Scholar
  12. (12).
    J. C. Light, J. Chem. Phys. 40, 3221 (1961).CrossRefGoogle Scholar
  13. P. Pechukas and J. C. Light, J. Chem Phys. 42, 3281 (1965).CrossRefGoogle Scholar
  14. (13).
    J. H. McCreery and G. Wolken, Jr., Chem. Phys. Letters 39, 478 (1976).CrossRefGoogle Scholar
  15. (14).
    J. H. McCreery and G. Wolken, Jr., J. Chem. Phys. 65, 1310 (1976).CrossRefGoogle Scholar
  16. (15).
    A. B. Elkowitz, J. H. McCreery and G. Wolken, Jr., Chem Phys. (in press).Google Scholar
  17. (16).
    L. Sptizer, W. D. Cochran and A. Hirschfeld, Astrophys. J. Suppl. 28, 373 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • George WolkenJr.
    • 1
  1. 1.BATTELLE-Columbus LaboratoriesColumbusUSA

Personalised recommendations