Computer Aided Interpretation of Spectroscopic Data for the Structure Elucidation of Organic Compounds

  • J. T. Clerc


Spectroscopic methods have become important tools for the identification and structure elucidation of organic compounds. The methods most widely used in routine work include infrared spectroscopy, UV/Vis spectroscopy, nuclear magnetic resonance spectroscopy (for protons as well as for carbon-13), and mass spectrometry. For the interpretation of spectra the chemist mainly uses semiempirical methods which are based on large amounts of previously accumulated reference data. The interpretation process, as performed by a human analyst, may conveniently be broken down into five distinctive steps as given in Table 1. All computerised interpretation methods also fit into this scheme. They differ mainly in which of the five steps are automated and what methods are used. The first step includes the acquisition of the spectroscopic data and its conversion into computer readable form. For obvious reasons this step is always at least partially automated. Methods for the digital acquisition of spectroscopic data are well known. They are not dealt with in this paper.


Reference Compound Reference Library Pattern Recognition Method Computer Interpretation Tentative Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Chernoff, J. Amer. Statistic. Assoc. 68, 361 (1973).CrossRefGoogle Scholar
  2. 2.
    E. Pretsch, J.T. Clerc, J. Seibl and W. Simon, “Tabellen zur Strukturaufklärung organischer Verbindungen mit spektroskopischen Methoden”, Springer-Verlag, Heidelberg, 1976.Google Scholar
  3. 3.
    B.A. Jezl and D.L. Dalrymple, Anal. Chem. 47, 203 (1975).CrossRefGoogle Scholar
  4. 4.
    P. Sommerauer and J.T. Clerc, unpublished results.Google Scholar
  5. 5.
    N.A.B. Gray, Anal. Chem. 47, 2426 (1975).CrossRefGoogle Scholar
  6. 6.
    D.H. Smith, B.G. Buchanan, R.S. Engelmore, A.M. Duffield, A. Yeo, E.A. Feigenbaum, J. Lederberg and C. Djerassi, J. Amer. Chem. Soc. 94, 5962 (1972).CrossRefGoogle Scholar
  7. 7.
    L.A. Gribov, V.A. Dementyev, M.E. Elyashberg and E. Z. Yakupov, J. Mol. Struct. 22, 161 (1974).CrossRefGoogle Scholar
  8. 8.
    P. C. Jurs and T. L. Isenhour, “Chemical Applications of Pattern Recognition”, John Wiley & Sons, New York, 1975.Google Scholar
  9. 9.
    N.J. Nilsson, “Learning Machines”, McGraw-Hill, New York, 1965.Google Scholar
  10. 10.
    J.T. Clerc, M. Kutter, M. Reinhard and R. Schwarzenbach, J. Chromat. 123, 271 (1976).CrossRefGoogle Scholar
  11. 11.
    J. Zupan, D. Hadzi and M. Penca, Kem. Ind. 23, 275 (1974).Google Scholar
  12. 12.
    H. B. Woodruff, S.R. Lowry and T.L. Isenhour, J. Chem. Info. Comput. Sci. 15, 207 (1975).CrossRefGoogle Scholar
  13. 13.
    R. J. Feldman and S.R. Heller, J. Chem. Educ. 49, 291 (1972).CrossRefGoogle Scholar
  14. 14.
    W. Voelter, G. Haas and E. Breitmaier, Chem. Ztg. 97, 567 (1973).Google Scholar
  15. 15.
    R. Schwarzenbach, J. Meili, H. Könitzer and J. T. Clerc, Org. Mag. Reson. 8, 11 (1976).CrossRefGoogle Scholar
  16. 16.
    K.S. Kwok, R. Venkataraghavan and F.W. McLafferty, J. Amer. Chem. Soc. 95, 4185 (1973).CrossRefGoogle Scholar
  17. 17.
    S. R. Heller, Anal. Chem. 44 1951 (1972).CrossRefGoogle Scholar
  18. 18.
    P. R. Nägeli and J. T. Clerc, Anal. Chem. 46, 739A (1974).Google Scholar
  19. 19.
    F. Erni and J. T. Clerc, Chimia 24, 388 (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • J. T. Clerc
    • 1
  1. 1.Department of Organic ChemistrySwiss Federal Institute of TechnologyZürichSwitzerland

Personalised recommendations