Chemistry of Large Molecular Systems Using Molecular Quantum Mechanics

  • R. P. Angeli
  • S. D. Hornung
  • R. E. Christoffersen


Recent developments in ab initio techniques and their applications to large molecular systems are presented, with particular emphasis on the molecular fragment technique. Included in the discussion are questions of basis set balance as applied to both ground and excited states of large molecules, as well as several computational considerations. In addition, studies on DNA components are discussed, including molecular orbital structure, ionization potentials, charge distribution, and electrostatic potentials, and these calculated properties are compared with available experimental data.


High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Lower Unoccupied Molecular Orbital Contour Level Perpendicular Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    a) Supported in part by a grant from The Upjohn Company, Kalamazoo, Michigan. Presented at the Third International Conference on Computers in Chemical Research, Education, and Technology, Caracas, Venezuela, July, 1976. b) Present address: Istituto di Ricerche “G. Donegani”, Montedison, Novara, Italy. c) Author to whom correspondence should be addressed.Google Scholar
  2. 2.
    For examples of ab initio techniques and their application to large molecular systems, see R. E. Christoffersen, Adv. Quantum Chem., 6, 333 (1972), and references 3-8.Google Scholar
  3. 3.
    D. Spangler, R. McKinney, G. M. Maggiora, L. L. Shipman, and R. E. Christoffersen, Chem. Phys. Letters, 36, 427 (1975).CrossRefGoogle Scholar
  4. 4.
    E. Clementi, Proc. Nat. Acad. Sci. (USA), 69, 2942 (1972).CrossRefGoogle Scholar
  5. 5.
    F. Herman, A. D. McLean, R. K. Nesbet, “Computational Methods for Large Molecules and Localized States in Solids”, Plenum Press (1973).Google Scholar
  6. 6.
    J. Hinze, Adv. Chem. Phys., 26, 213 (1974).CrossRefGoogle Scholar
  7. 7.
    H. F. Schaeffer, Ann. Rev. Phys. Chem., in press.Google Scholar
  8. 8.
    G. G. Hall, C. J. Miller, and G. W. Schnuelle, J. Theoret. Biol., 53, 475 (1975).CrossRefGoogle Scholar
  9. 9.
    For examples of semi-empirical techniques, see S. Diner, J. P. Malrieu, F. Jordan, and M. Gilbert, Theoret. Chim. Acta, 15, 100 (1969), and references 10-14.CrossRefGoogle Scholar
  10. 10.
    J. A. Pople and D. L. Beveridge, “Approximate Molecular Orbital Theory”, McGraw-Hill (1970).Google Scholar
  11. 11.
    M. J. S. Dewar and E. Haselbach, J. Amer. Chem. Soc., 92, 590 (1970).CrossRefGoogle Scholar
  12. 12.
    J. C. Slater and K. H. Johnson, Phys. Rev., B5, 844 (1972).Google Scholar
  13. 13.
    L. Lohr and W. N. Lipscomb, J. Chem. Phys., 38, 1607 (1963)CrossRefGoogle Scholar
  14. R. Hoffman, J. Chem. Phys., 39, 1397 (1964)CrossRefGoogle Scholar
  15. R. Rein, N. Fukudo, H. Win, G. E. Clarke and F. Harris, J. Chem. Phys., 45, 4743 (1966).CrossRefGoogle Scholar
  16. 14.
    T. A. Halgren and W. N. Lipscomb, J. Chem. Phys., 58, 1569 (1973).CrossRefGoogle Scholar
  17. 15.
    R. E. Christoffersen, D. Spangler, G. M. Maggiora, and G. G. Hall, J. Amer. Chem. Soc., 95 8526 (1973) and references contained therein for a discussion of the molecular fragment technique.CrossRefGoogle Scholar
  18. 16.
    C. C. J. Roothaan, Rev. Mod. Phys, 23, 69 (1951).CrossRefGoogle Scholar
  19. 17.
    G. G. Hall, Proc. Roy. Soc., A205, 541 (1951).Google Scholar
  20. 18.
    For an example of a smaller molecular system, but one in which more basis functions were used, see reference 4.Google Scholar
  21. 19.
    L. E. Nitzsche, C. Chabalowski, and R. E. Christoffersen, J. Amer. Chem. Soc., in press. Fig. 2 reprinted with permission.Google Scholar
  22. 20.
    See, for example, K. Beyreuther, K. Adler, N. Geisler, and A. Klemm, Proc. Nat. Acad. Sci. (USA), 70, 3576 (1973), and references 21 and 22.CrossRefGoogle Scholar
  23. 21.
    W. Gilbert and A. Maxam, Proc. Nat. Acad. Sci. (USA), 70, 3581 (1973).CrossRefGoogle Scholar
  24. 22.
    T. A. Seitz, T. J. Richmond, D. Wise, and D. Engleman, Proc. Nat. Acad. Sci. (USA), 71, 593 (1974).CrossRefGoogle Scholar
  25. 23. For an initial report on these studies, see R. E. Christoffersen and R. P. Angeli, Proc. 2nd Internat. Congress of Quantum Chem., in press.Google Scholar
  26. 24.
    S. Peng, A. Padva, and P. R. LeBreton, Tetrahedron Letters, in press.Google Scholar
  27. 25.
    A. Padva, T. J. O’Donnell, and P. R. LeBreton, Chem. Phys. Letters, in press.Google Scholar
  28. 26.
    T. Koopmans, Physica, 1, 104 (1934).CrossRefGoogle Scholar
  29. 27.
    W. Hug and I. Tinoco, Jr., J. Amer. Chem. Soc, 96, 665 (1974).CrossRefGoogle Scholar
  30. 28.
    A. Pullman, “Chemical and Biochemical Reactivity”, Jerusalem Sympos. on Quantum Chem. and Biochem., VI, 1 (1974).Google Scholar
  31. 29.
    L. F. Cavalieri and B. H. Rosenberg, J. Amer. Chem. Soc., 79, 5352 (1957).CrossRefGoogle Scholar
  32. 30.
    J. J. Christensen, J. H. Rytting, and R. M. Izatt, Biochem., 9, 4907 (1970).CrossRefGoogle Scholar
  33. 31.
    P. D. Lawley, Prog. Nucl. Acid Res., 5, 89 (1966).CrossRefGoogle Scholar
  34. 32.
    P. Brookes and P. D. Lawley, J. Chem. Soc. (Lond.), 1348 (1962).Google Scholar
  35. 33.
    D. Voet and A. Rich, Prog. Nucl. Acid Res., 10, 183 (1970).CrossRefGoogle Scholar
  36. 34.
    M. Spencer, Acta Cryst., 12, 59 (1959).CrossRefGoogle Scholar
  37. 35.
    R. F. Stewart and L. H. Jensen, Acta Cryst., 23, 1102 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • R. P. Angeli
    • 1
  • S. D. Hornung
    • 1
  • R. E. Christoffersen
    • 1
  1. 1.Chemistry DepartmentUniversity of KansasLawrenceUSA

Personalised recommendations