Advertisement

Description of Rapid Rearrangements with the Aid of Longuet-Higgins Group Theory. Spectroscopy and Reaction Mechanisms

  • Carl Trindle
  • Thomas Bouman
  • Sambhu Datta
  • Charles Duncan

Abstract

Degenerate rearrangements occur on highly symmetric potential surfaces; in these systems, the symmetry of the surface may be of more importance than the symmetry of any instantaneously definable molecular configuration. The symmetry of the surface can dictate certain properties of chemical reactions on that surface.

As one of the consequences of the surface’s symmetry, we are able to define “proper generators” of the group of the potential surface as corresponding to easy single-step reactions, and show by numerous chemical examples how the “proper generators” help to identify elementary steps in complex rearrangements when only the net rearrangement is known, or when many mechanisms are consistent with given experimental data.

Keywords

Point Group Symmetry Operation Negative Character Proper Generator Rovibronic Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, e. g., R.E. Leone and P.V.R. Schleyer, Angew. Chem. Int. Ed. Engl., 9, 860 (1970).CrossRefGoogle Scholar
  2. 2.
    H.C. Longuet-Higgins, Mol. Phys., 6, 445 (1963).CrossRefGoogle Scholar
  3. 3.
    See, e. g., J.C.D. Brand, J. Mol. Spect., 43, 342 (1972).CrossRefGoogle Scholar
  4. 4.
    B.J. Dalton, J. Chem. Phys., 54, 4745 (1971).CrossRefGoogle Scholar
  5. 5.
    C. Trindle and T.D. Bouman, Intern. J. Quantum Chem. Symp., 7, 329 (1973).CrossRefGoogle Scholar
  6. 6.
    C. Trindle and T.D. Bouman, Proc. VI Jerusalem Symp. Chem. Biochem. React., ed. B. Pullman and E.D. Bergmann, Israel Acad. Sci., Hum., 1974 (p. 51).Google Scholar
  7. 7.
    T.D. Bouman and C. Trindle, 9th ACS Midwest Regional Meeting, October, 1973, Theoret. Chim. Acta, 37, 297 (1975).Google Scholar
  8. 8.
    C. Trindle and T.D. Bouman, Int. J. Quantum Chem. Symp., 10, (in press) 1976.Google Scholar
  9. 9.
    W.G. Klemperer, J. Am. Chem. Soc., 95, 380, 2105 (1973).CrossRefGoogle Scholar
  10. 10.
    R.E. Stanton and J.W. McIver, Jr., J. Am. Chem. Soc., 97, 3632 (1975).CrossRefGoogle Scholar
  11. 11.
    P. Gillespie, P. Hoffman, H. Klusacek, D. Marquarding, S. Pfohl, F. Ramirez, E.A. Tsolis and I. Ugi, Angew. Chem. Int. Ed., 10, 687 (1971)CrossRefGoogle Scholar
  12. See J. Brocas and D. Fastenakel, Mol. Phys., 30, 193 (1975), who make this statement more precise.CrossRefGoogle Scholar
  13. 12.
    E.L. Muetterties, J. Am. Chem. Soc., 91, 1636, 4115 (1969).CrossRefGoogle Scholar
  14. 13.
    R.S. Berry, J. Chem. Phys., 32, 933 (1960).CrossRefGoogle Scholar
  15. 14.
    Reviewed by I. Ugi, D. Marquarding, H. Klusacek, G. Gokel, and P. Gillespie, Angew. Chem., Int. Ed., 9, 703 (1970).CrossRefGoogle Scholar
  16. 15.
    R.J. Gillespie, Angew. Chem., 79, 885 (1967)CrossRefGoogle Scholar
  17. R.J. Gillespie, Angew. Chem. Int. Ed., 6, 819 (1967).CrossRefGoogle Scholar
  18. 16.
    R.E. Rundle, J. Amer. Chem. Soc., 85, 112 (1963).CrossRefGoogle Scholar
  19. 17.
    T.H. Brown, P.H. Kasai, and P.H. Verdier, J. Chem. Phys., 40, 3448 (1964).CrossRefGoogle Scholar
  20. 18.
    R.F. Code, W.E. Falconer, W. Klemperer, and I. Ozier, J. Chem. Phys., 47, 4955 (1966)CrossRefGoogle Scholar
  21. W.E. Falconer, A. Buchler, J.L. Stauffer, and W. Klemperer, J. Chem. Phys., 48, 312 (1968).CrossRefGoogle Scholar
  22. 19.
    R.M. Gavin, Jr., and L.S. Bartell, J. Chem. Phys., 48, 2460 (1968)CrossRefGoogle Scholar
  23. R.M. Gavin, Jr., and L.S. Bartell, J. Chem. Phys., 48, 2466 (1968)CrossRefGoogle Scholar
  24. L.S. Bartell, J. Chem. Phys., 46, 4530 (1967).CrossRefGoogle Scholar
  25. 20.
    H. Kim, H.H. Claassen, and E. Pearson, Inorg. Chem., 7, 616 (1968).CrossRefGoogle Scholar
  26. 21.
    G.L. Goodman, J. Chem. Phys., 56, 5038 (1972)CrossRefGoogle Scholar
  27. H.H. Claassen, G.L. Goodman, and H. Kim, J. Chem. Phys., 56, 5042 (1972).CrossRefGoogle Scholar
  28. 22.
    U. Nielsen, R. Haensel, and W.H.E. Schwarz, J. Chem. Phys., 61, 3581 (1974).CrossRefGoogle Scholar
  29. 23.
    J.G. Malm, H. Selig, J. Jortner, and S.A. Rice, Chem. Rev., 65, 199 (1965)CrossRefGoogle Scholar
  30. E.W. Phillips, J.W.D. Connolly, and S.B. Trickey, Chem. Phys. Lett., 14, 203 (1972).CrossRefGoogle Scholar
  31. 24.
    F.J. Comes, R. Haensel, U. Nielsen, and W.H.E. Schwarz, J. Chem. Phys., 58, 516 (1973).CrossRefGoogle Scholar
  32. 25.
    S.Y. Wang, and L.L. Lohr, Jr., J. Chem. Phys., 60, 3901 (1974)CrossRefGoogle Scholar
  33. S.Y. Wang, and L.L. Lohr, Jr., J. Chem. Phys., 60, 3916 (1974)CrossRefGoogle Scholar
  34. S.Y. Wang, and L.L. Lohr, Jr., J. Chem. Phys., 61, 4110 (1974).CrossRefGoogle Scholar
  35. 26.
    K.S. Pitzer and L.S. Bernstein, J. Chem. Phys., 63, 3849 (1975)CrossRefGoogle Scholar
  36. L.S. Bernstein and K.S. Pitzer, J. Chem. Phys., 62, 2530 (1975).CrossRefGoogle Scholar
  37. 27.
    J.I. Musher, Inorg. Chem., 11, 2335 (1972).CrossRefGoogle Scholar
  38. 28.
    E. Ruch and W. Hasselbarth, Theoret. Chim. Acta, 29, 259 (1973).CrossRefGoogle Scholar
  39. 29.
    B.J. Dalton, J. Chem. Phys., 54, 4745 (1971)CrossRefGoogle Scholar
  40. B.J. Dalton, Mol. Phys., 11, 265 (1966).CrossRefGoogle Scholar
  41. 30.
    F.A. Cotton, D.L. Hunter, and P. Lahuerta, J. Am. Chem. Soc., 96, 4723 (1974).CrossRefGoogle Scholar
  42. 31.
    R.J.H. Clark and A.J. McAlees, J. Chem. Soc., A2026 (1970)Google Scholar
  43. R.J.H. Clark and A.J. McAlees, Inorg. Chem., 11, 342 (1972); J. Chem. Soc. Dalton Trans., 640 (1972).CrossRefGoogle Scholar
  44. 32.
    P. Finnocchiaro, J. Am. Chem. Soc., 97, 4443 (1975).CrossRefGoogle Scholar
  45. 33.
    S.S. Eaton and G.R. Eaton, J. Am. Chem. Soc., 95, 1459 (1973).CrossRefGoogle Scholar
  46. 34.
    F.A. Cotton, ch. 10, p. 377 in “Dynamic Nuclear Magnetic Resonance Spectroscopy,” ed., L.M. Jockman and F.A. Cotton, (Academic Press), New York, 1975.Google Scholar
  47. 35.
    F.A. Cotton, D.L. Hunter, P. LaHuerta, J. Am. Chem. Soc., 97, 1046 (1975).CrossRefGoogle Scholar
  48. 36.
    P. Vogel, M. Saunders, N.M. Hasty, Jr., and J.A. Berson, J. Am. Chem. Soc., 93, 1551 (1973).Google Scholar
  49. 37.
    F.G. Klarner, Angew. chem. Int. Ed. Engl., 13, 269 (1974).CrossRefGoogle Scholar
  50. 38.
    R.E. Leone, J.C. Barborak, and P.V.R. Schleyer, in “Carbonium Ions,” G.A. Olah and P.V.R. Schleyer, Vol IV, Chapter 33, Wiley (1973).Google Scholar
  51. 39.
    R. Hoffmann, W.D. Stohrer, and A. Yoshida, Bull. Chem. Soc., Japan, 45, 2513 (1972).CrossRefGoogle Scholar
  52. 40.
    S. Yoneda, S. Winstein, A. Yoshida, ibid., p. 2510.Google Scholar
  53. 41.
    M.J. Goldstein and S.A. Kline, J. Am. Chem. Soc., 95, 935 (1973).CrossRefGoogle Scholar
  54. 42.
    L. Salem and J.S. Wright, J. Am. Chem. Soc., 91, 5947 (1969).CrossRefGoogle Scholar
  55. 43.
    H. Kollmar, H.O. Smith and P. Schleyer, J. Am. Chem. Soc., 95, 5834 (1973); M.J.S. Dewar and R.C. Haddon, ibid., 5826; W.J. Hehre and P. Schleyer, ibid., 5837.CrossRefGoogle Scholar
  56. 44.
    W.D. Stohrer and R. Hoffmann, J. Am. Chem. Soc., 94, 1661 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Carl Trindle
    • 1
  • Thomas Bouman
    • 1
  • Sambhu Datta
    • 1
  • Charles Duncan
    • 1
  1. 1.Department of ChemistryUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations