Cluster Method Multiple Scattering Calculations of Electronic Density of States of Amorphous and Liquid Metallic Alloys

  • Jaime Keller


The multiple scattering cluster method approach has been used to compute the density of states of several amorphous and liquid metallic alloys. Local one electron potentials are constructed from the electron gas theory of exchange and correlation (Sxc). The use of MS to solve the Schrodinger equation with Sxc to construct the potentials from the charge density and self consistency criteria for the occupation of the levels, classified according to the atomic notation s, p, d, and f, allows the study of the relative position of the free electron, d and f bands in normal, transition and rare earth metals systems.

The results are illustrated with examples from Au, Ni-Rh, Ce-Sn, Ce-Ge, Co where some new approaches to study convergency and include charge transfer are discussed. A new result: the transformation of free electron character into d-electron character on alloying can be clearly seen. We also relate the results with our previous calculations for liquid metallic and amorphous alloys.


Fermi Level Multiple Scattering Rare Earth Metal Normal Metal Majority Spin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beebe N., Chem. Phys. Letters 19, 290 (1973).CrossRefGoogle Scholar
  2. Duff K.J. and Das T.P., Phys. Rev. B3, 192 (1971).Google Scholar
  3. Duff K.J. and Das T.P., Phys. Rev. B3, 2294 (1971).Google Scholar
  4. Evans R., Guentherodt H.J., Kuenzi H.U. and Zimmermann A., Phys. Letters 38A, 151 (1972).Google Scholar
  5. Eyges L., Phys. Rev. 111, 683, (1958).CrossRefGoogle Scholar
  6. Garritz A. and Keller J., to be published.Google Scholar
  7. Garritz A. and Keller J., in the Proceedings of the Int. Conference on the Electronic and Magnetic Properties of Liquid Metals, 1975.Google Scholar
  8. Garritz A., M. Sc. Thesis, UNAM, 1974.Google Scholar
  9. Herman F., J.P. van Dyke, I.B. Ortenburger, Phys. Rev. Letters 22, 807 (1969).CrossRefGoogle Scholar
  10. Herman F., and Schwarz, K., in Computational Solid State Physics, 245., edited by F. Herman, N.W. Dalton, and T.R. Koehler, Plenum Press Corp., 1972.Google Scholar
  11. Keller J., J. Phys. C: Solid State Phys. 4, L85, 1971.CrossRefGoogle Scholar
  12. Keller J., Computational Methods for Large Molecules and Localized States in Solids, Edited by F. Herman, A.D. McLean, and R.K. Nesbet (Plenum Press, 1973).Google Scholar
  13. Keller J., Int. J. Quantum Chem. 9, 583, 1975. Paper Presented at the Sanibel Symposia, 1973.Google Scholar
  14. Keller J., paper presented at the Third Intern. Conf. on Liquid Metals, Bristol, U.K., 1976. To be published.Google Scholar
  15. Keller, J., Fritz J. and Garritz A., J. Phys. (France) 35, C4–379 (1974).Google Scholar
  16. Keller J. and Garritz A., paper presented at the Sanibel Symposia 1977, submitted to the Proceedings I.J.O.C.Google Scholar
  17. Keller J. and Smith P.V., J. Phys. C.: Solid State Phys. 5, 1109 (1972).CrossRefGoogle Scholar
  18. Lloyd P. and Smith P.V., Advan. Phys. 21, 69 (1972).CrossRefGoogle Scholar
  19. Lloyd P., Proc. Phys. Soc. 90, 207, 1967.CrossRefGoogle Scholar
  20. Shull C.G. and Mook H.A., Phys. Rev. Letters 16, 184 (1966).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Jaime Keller
    • 1
  1. 1.Facultad de QuímicaU.N.A.M.México 20, D.F.Mexico

Personalised recommendations