Comparison of Different Theoretical Approaches in the Study of Chemisorption on Metal Sources

  • Norah V. Cohan
  • Mariana Weissmann

Abstract

We compare two approaches for the study of chemisorption on metal sources; the interaction of the adatom with the infinite surface and the surface molecule approach. In particular we analyze the effect of the intraatomic coulombic interaction in the adatom by the self-consistent tight binding hamiltonian and by the Hartree-Fock approximations to the Anderson Hamiltonian. We also study the effect of the overlap between the adatom and the neighbor substrate orbitals.

We show our results obtained by the continued fraction method with the self-consistent tight binding hamiltonian with and without overlap and compare them with other calculations. The inclusion of the overlap improves considerably the results. We notice that this type of calculation requires medium size computer facilities.

Finally some suggestions are given for further research in this area.

Keywords

Graphite Bors Argentina Chemisorption Aires 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Melius, Chem. Phys. Letters 39 287 (1976).CrossRefGoogle Scholar
  2. J. P. Muscat, J. Phys. C: Solid State 8 425 (1975).CrossRefGoogle Scholar
  3. T. B. Grimley and M. Torrini, J. Phys. C: Solid State 6 868 (1973).CrossRefGoogle Scholar
  4. T. E. Einstein, Phys. Rev. B 11 577 (1975).CrossRefGoogle Scholar
  5. R. P. Messmer, Computers in Chemical Research and Education (Third International Conference, 1976)Google Scholar
  6. G. Blyholder, Computers in Chemical Research and Education (Third International Conference, 1976)Google Scholar
  7. See for example, T. L. Einstein and J. R. Schrieffer, Phys. Rev. B 7 3629 (1973).CrossRefGoogle Scholar
  8. C. Kittel, “Quantum Theory of Solids,” New York, Wiley, pag. 339 (1963).Google Scholar
  9. T. B. Grimley, Proc. Phys. Soc. London 90 751 (1967).CrossRefGoogle Scholar
  10. R. Haydock, V. Heine and M. J. Kelly, J. Phys. C: Solid State 5 2845 (1972).CrossRefGoogle Scholar
  11. See for example, L. W. Anders, R. S. Hansen and L. S. Bartell, J. Chem. Phys. 59 5277 (1973)CrossRefGoogle Scholar
  12. P. W. Anderson, Phys. Rev. 124 41 (1961).CrossRefGoogle Scholar
  13. D. M. Newns, Phys. Rev. 178 1123 (1969).CrossRefGoogle Scholar
  14. W. Brenig and K. Schonhammer, Z. Phys. 267 201 (1974).CrossRefGoogle Scholar
  15. E. Anda, private communication.Google Scholar
  16. R. Haydock, V. Heine and M. J. Kelly, J. Phys. C: Solid State 8 2591 (1975).CrossRefGoogle Scholar
  17. R. H. Paulson and J. R. Schrieffer, Surf. Sci. 48 329 (1975).CrossRefGoogle Scholar
  18. R. H. Paulson and T. N. Rhodin, Surf. Sci. 55 61 (1976).CrossRefGoogle Scholar
  19. T. B. Grimley and C. Pisani, J. Phys. C: Solid State 7 2831 (1974).CrossRefGoogle Scholar
  20. N. V. Cohan, M. Gordon and M. Weissmann, Solid St. Commun., in the press, and to be published.Google Scholar
  21. A. J. Bennett, B. McCarroll and R. P. Messmer, Surf. Sci. 24 191 (1971)CrossRefGoogle Scholar
  22. A. J. Bennett, B. McCarroll and R. P. Messmer, Phys. Rev. B 3 1397 (1971).CrossRefGoogle Scholar
  23. R. P. Messmer, B. McCarroll and C. M. Singel, J. Vac. Sci. and Tech. 9 891 (1971).CrossRefGoogle Scholar
  24. F. Cyrot-Lackmann, M. J. Desjonqueres and J. P. Gaspard, J. Phys. C: Solid State 7 925 (1974).CrossRefGoogle Scholar
  25. G. Blyholder, J. Chem. Soc. Chem. Commun. 17 625 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Norah V. Cohan
    • 1
  • Mariana Weissmann
    • 1
  1. 1.Department of PhysicsComisión Nacional de Energía Atómica Avda. del LibertadorBuenos AiresArgentina

Personalised recommendations