Advertisement

Semi-Empirical Molecular Orbital Calculations Relevant to Adsorption and Catalysis on Metal Surfaces

  • George Blyholder

Abstract

The development of modern large electronic computers has led to major developments in theoretical approaches to surface chemistry. The application of semi-empirical quantum theory to surface chemistry is illustrated by calculations for clusters, adsorbed species (largely H atoms and CO) and, reactions of diatomic molecules on transition metal clusters. It is concluded that semi-empirical molecular orbital calculations have already demonstrated their utility to surface chemistry by presenting results that have modified the thinking of surface scientists about some surface processes. In particular the semi-empirical calculations brought to everyone’s attention the fact that metal s and p orbitals play an important role in chemisorption when previously attention had been focused almost exclusively on d orbitals. Also semi-empirical calculations gave a new interpretation for the ultraviolet photo-electron spectrum of CO adsorbed on Ni, which has subsequently received experimental support. In addition the semi-empirical calculations provide some guideline numbers in the use of molecular orbital theory as a framework within which to correlate and discuss experimental data such as catalytic reactivity on alloys.

Keywords

Adsorbed Species Molecular Orbital Calculation Orbital Exponent Electron Repulsion Integral Atom Binding Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Blyholder, J. Chem. Phys. 44, 3134 (1966).CrossRefGoogle Scholar
  2. 2.
    W. A. Pliskin and R. P. Eischens, Z. Phys, Chem. 24, 11 (1960).CrossRefGoogle Scholar
  3. 3.
    J. H. Sinfelt, Adv. Catalysis, 23, 91 (1973).CrossRefGoogle Scholar
  4. 4.
    J. H. Sinfelt, Catalysis Rev., 3, 175 (1969).CrossRefGoogle Scholar
  5. 5.
    W. H. Weinberg, J. Vac. Sci. and Tech., 10, 89 (1973).CrossRefGoogle Scholar
  6. 6.
    S. G. Davison and J. D. Levine, Solid State Physics, 25, 1 (1970).CrossRefGoogle Scholar
  7. 7.
    P. Mark, Catalysis Reviews, 1, 165 (1968).CrossRefGoogle Scholar
  8. 8.
    G. Blyholder, “Modern Aspects of Electrochemistry No. 8”, Ed. by J. O’M Bockris and B. E. Conway, Plenum Press, New York, 1972.Google Scholar
  9. 9.
    J. R. Schrieffer, J. Vac. Sci. and Tech., 9, 561 (1972).CrossRefGoogle Scholar
  10. 10.
    J. R. Schrieffer, J. Vac. Sci. and Tech., 13, 335 (1976).CrossRefGoogle Scholar
  11. 11.
    D. J. M. Fassaert, Thesis, University of Nijmegen, The Netherlands (1976).Google Scholar
  12. 12.
    G. Blyholder and C. A. Coulson, Trans. Faraday Soc. 63, 1782 (1967).CrossRefGoogle Scholar
  13. 13.
    T. B. Grimley, “Molecular Processes on Solid Surfaces”, Ed. by E. Drauglis, R. D. Gretz and R. I. Jaffee, McGraw-Hill, New York, 1969, p. 299.Google Scholar
  14. 14.
    Y. Soma-Noto and W.M.H. Sachtler, J. Catalysis, 32, 315 (1974).CrossRefGoogle Scholar
  15. 15.
    Y. Soma-Noto and W.M.H. Sachtler, J. Catalysis, 34, 162 (1974).CrossRefGoogle Scholar
  16. 16.
    C.C.J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).CrossRefGoogle Scholar
  17. 17.
    R. Hoffman, J. Chem. Phys., 39, 1397 (1963).CrossRefGoogle Scholar
  18. 18.
    G. Blyholder and C. A. Coulson, Theoret. Chem. data, 10, 316 (1968).CrossRefGoogle Scholar
  19. 19.
    J. A. Pople and D. L. Beveridge, “Approximate Molecular Orbital Theory”, McGraw-Hill, New York, N.Y., 1970.Google Scholar
  20. 20.
    C.E.K. Mees and T. H. James, “The Theory of the Photographic Process”, MacMillan, New York, 1966.Google Scholar
  21. 21.
    R. C. Baetzold, J. Chem. Phys., 55, 4355 (1971).CrossRefGoogle Scholar
  22. 22.
    L. C. Cusachs and J. W. Reynolds, J. Chem. Phys., 43, 5160 (1965).Google Scholar
  23. 23.
    R. C. Baetzold, J. Chem. Phys., 55, 4363 (1971).CrossRefGoogle Scholar
  24. 24.
    R. C. Baetzold and R. E. Mack, J. Chem. Phys., 62, 1513 (1975).CrossRefGoogle Scholar
  25. 25.
    C. Norris and H. P. Meyers, J. Physics F., 1, 62 (1971).CrossRefGoogle Scholar
  26. 26.
    D. E. Eastman and W. D. Grobman, Phys. Rev. Lett., 30, 177 (1973).CrossRefGoogle Scholar
  27. 27.
    D.J.M. Fassaert, H. Verbeek, and A. van der Avoird, Sur. Sci., 29, 501 (1972).CrossRefGoogle Scholar
  28. 28.
    G. Blyholder, Surface Sci., 42, 249 (1974).CrossRefGoogle Scholar
  29. 29.
    G. Blyholder, J. Res. Inst. for Catalysis, Hokkaido U., 21, 95 (1974).Google Scholar
  30. 30.
    A. Kant, J. Phys. Chem., 41, 1872 (1964).CrossRefGoogle Scholar
  31. 31.
    W. Romanowski, Sur. Sci., 18, 373 (1969).CrossRefGoogle Scholar
  32. 32.
    Kahn and L. Salem, The Sixth Int. Cong. on Catalysis, paper A2, London, 1976.Google Scholar
  33. 33.
    H. Sinfelt, J. Catalysis, 29, 308 (1973).CrossRefGoogle Scholar
  34. 34.
    J. H. Sinfelt, J. L. Carter and D.J.C. Yates, J. Catalysis, 24, 283 (1972).CrossRefGoogle Scholar
  35. 35.
    H. Itoh, J. Phys. F. 4, 1930 (1974).CrossRefGoogle Scholar
  36. 36.
    D. H. Seiband, W. E. Spicer, Phys. Rev., B 2, 1676, 1694 (1970).CrossRefGoogle Scholar
  37. 37.
    J. H. Sinfelt, Am. Inst. Chem. Eng., 63, 16 (1967).Google Scholar
  38. 38.
    F. Figueras, B. Mencier, L. De Mourgues, C. Naccache, and Y. Trambouge, J. Cat., 19, 315 (1970).CrossRefGoogle Scholar
  39. 39.
    R. C. Baetzold, Surface Sci., 36, 123 (1972).CrossRefGoogle Scholar
  40. 40.
    W. F. Taylor, D.J.C. Yates, and J. H. Sinfelt, J. Phys. Chem., 68, 2962 (1964).CrossRefGoogle Scholar
  41. 41.
    B. Lewis, Surface Sci., 21, 273, 289 (1970).CrossRefGoogle Scholar
  42. 42.
    D.J.M. Fassaert and A. van der Avoird, Surface Sci., 55, 291, (1976).CrossRefGoogle Scholar
  43. 43.
    D.J.M. Fassaert and A. van der Avoird, Surface Sci., 55, 313 (1976).CrossRefGoogle Scholar
  44. 44.
    J. Lapujoulade and K. S. Neil, J. Chem. Phys., 57, 3535 (1972).CrossRefGoogle Scholar
  45. 45.
    J. Lapujoulade and K. S. Neil, Surface Sci., 35, 288 (1973).CrossRefGoogle Scholar
  46. 46.
    J. Lapujoulade and K. S. Neil, J. Chem. Phys., 70, 798 (1973).Google Scholar
  47. 47.
    K. Christmann, O. Schober, G. Ertl and M. Neumann, J. Chem. Phys., 60, 4528 (1974).CrossRefGoogle Scholar
  48. 48.
    A. B. Kunz, M. P. Guse and R. J. Blint, Chem. Phys. Lett., 37, 512 (1976).CrossRefGoogle Scholar
  49. 49.
    L. W. Anders, R. S. Hansen and L. S. Bartell, J. Chem. Phys., 59, 5277 (1973).CrossRefGoogle Scholar
  50. 50.
    L. W. Anders, R. S. Hansen and L. S. Bartell, J. Chem. Phys., 62, 1641 (1975).CrossRefGoogle Scholar
  51. 51.
    P. J. Estrup and J. Anderson, J. Chem. Phys., 46, 567 (1967).CrossRefGoogle Scholar
  52. 52.
    D. L. Adams and L. H. Germer, Surface Sci., 26, 109 (1971).CrossRefGoogle Scholar
  53. 53.
    T. A. Delchar and G. Ehrlich, J. Chem. Phys., 42, 2686 (1965).CrossRefGoogle Scholar
  54. 54.
    G. Blyholder, J. Chem. Phys., 62, 3193 (1975).CrossRefGoogle Scholar
  55. 55.
    H.J.M. Bowen et al., Chem. Soc. (London), Spec. Publ., 11, (1958).Google Scholar
  56. 56.
    G. C. Bond, “Catalysis by Metals”, Academic Press, New York, 1962.Google Scholar
  57. 57.
    G. C. Bond, Discussions Faraday Soc., 41, 200 (1966).CrossRefGoogle Scholar
  58. 58.
    D. M. Newns, Phys. Rev., 178, 1123 (1969).CrossRefGoogle Scholar
  59. 59.
    M. Watanable, Surface Sci., 34, 759 (1973).CrossRefGoogle Scholar
  60. 60.
    D. E. Eastman and J. R. Cashion, Phys. Rev. Lett., 27, 1520 (1971).CrossRefGoogle Scholar
  61. 61.
    G. Blyholder, J. Vac. Sci. and Tech., 11, 865 (1974).CrossRefGoogle Scholar
  62. 62.
    G. Blyholder, J. Phys. Chem., 79, 756 (1975).CrossRefGoogle Scholar
  63. 63.
    J. C. Tracy, J. Chem. Phys., 56, 2736 (1972).CrossRefGoogle Scholar
  64. 64.
    R. L. Park and H. E. Farnswork, J. Chem. Phys., 43, 2351 (1965).CrossRefGoogle Scholar
  65. 65.
    J. C. Robertson and C. W. Wilmsen, J. Vac. Sci. and Tech., 9, 901 (1972).CrossRefGoogle Scholar
  66. 66.
    R. R. Ford, Adv. Catal., 21, 51 (1970).CrossRefGoogle Scholar
  67. 67.
    P. Politzer and S. D. Kasten, J. Phys. Chem., 80, 385 (1976).CrossRefGoogle Scholar
  68. 68.
    A. Sherman, C. E. Sun, and H. Eyring, J. Chem. Phys., 3, 49 (1934).CrossRefGoogle Scholar
  69. 69.
    A. B. Anderson and R. Hoffmann, J. Chem. Phys., 61, 4545 (1974).CrossRefGoogle Scholar
  70. 70.
    J. R. Schrieffer and R. Gomer, Sur. Sci., 25, 315 (1971).CrossRefGoogle Scholar
  71. 71.
    J. R. Smith, S. C. Ying and W. Kohn, Phys. Rev. Lett, 30, 610 (1973).CrossRefGoogle Scholar
  72. 72.
    R. C. Baetzold, Surface Sci., 51, 1 (1975).CrossRefGoogle Scholar
  73. 73.
    E. G. Allison and G. C. Bond, Cat. Reb., 7, 233 (1972).CrossRefGoogle Scholar
  74. 74.
    H. Kolbet and K. D. Tillmetz, J. Cat., 34, 307 (1974).CrossRefGoogle Scholar
  75. 75.
    R. B. Anderson, L. J. Hofer and H. H. Storch, Chem. Ing. Tech., 30, 560 (1958).CrossRefGoogle Scholar
  76. 76.
    K. Touroude, L. Hilaire and F. G. Gault, J. Catalysis, 32, 279 (1974).CrossRefGoogle Scholar
  77. 77.
    S. Carra and R. Ugo, Inorganic Chem. Octa Rev., 49 (1967).Google Scholar
  78. 78.
    A. B. Anderson, Chem. Phys. Lett., 35, 498 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • George Blyholder
    • 1
  1. 1.Department of ChemistryUniversity of ArkansasFayettevilleUSA

Personalised recommendations