Pulsed and Fourier Transform NMR Spectroscopy

  • Thomas C. Farrar
Part of the Modern Analytical Chemistry book series (MOAC)


Modern Fourier transform (FT) NMR spectrometers have been available commercially for only about six years, but in this short period of time many advances and improvements in instrumentation have been made. The first FT-NMR instruments were conventional, continuous wave (CW) spectrometers to which a pulsed RF transmitter, a modified receiver-detector system, a signal-averaging device, and a small minicomputer were attached. It is not too surprising that all of the early FT instruments were quite expensive ($100,000 to $200,000), difficult to operate, fraught with numerous operating problems, and not very reliable.


Sample Tube Free Induction Decay Nuclear Overhauser Effect Receiver Coil Free Induction Decay Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, London and New York, 1961.Google Scholar
  2. 2.
    C. P. Slichter, Principles of Magnetic Resonance, Harper & Row, New York, 1963.Google Scholar
  3. 3.
    E. D. Becker, High Resolution NMR, Academic Press, New York, 1969.Google Scholar
  4. 4.
    T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR, Academic Press, New York, 1971.Google Scholar
  5. 5.
    J. W. Cooley and J. W. Tukey, Math. Comput. 19, 297 (1965).CrossRefGoogle Scholar
  6. 6.
    R. R. Ernst and W. A. Anderson, Rev. Sci. Instrum. 37, 93 (1966).CrossRefGoogle Scholar
  7. 7.
    J. H. Noggle and R. E. Schirmer, The Nuclear Overhauser Effect, Academic Press, New York, 1971.Google Scholar
  8. 8.
    A. Pines, M. G. Gibby, and J. S. Waugh, J. Chem. Phys. 59, 569 (1973).CrossRefGoogle Scholar
  9. 9.
    J. D. Ellett, Jr., M. G. Gibby, U. Haeberlen, L. M. Huber, M. Mehring, A. Pines, and J. S. Waugh, Advan. Mag. Res. 5 (1971).Google Scholar
  10. 10.
    A. G. Redfield and R. K. Gupta, Adv. Mag. Res. 5 (1971); A. G. Redfield and S. D. Kunz, J. Mag. Res. 19, 250 (1975).CrossRefGoogle Scholar
  11. 11.
    R. W. Vaughan, D. D. Ellerman, L. M. Stacy, W.-K. Rhim, and J. W. Lee, Rev. Sci. Instrum. 43, 1356 (1972).CrossRefGoogle Scholar
  12. 12.
    E. O. Stejskal and J. Schaefer, J. Mag. Res. 18, 560 (1975).CrossRefGoogle Scholar
  13. 13.
    I. J. Lowe, Phys. Rev. Lett. 2, 285 (1959).CrossRefGoogle Scholar
  14. 14.
    H. Kessemeier and R. E. Norburg, Phys. Rev. 155, 321 (1967).CrossRefGoogle Scholar
  15. 15.
    E. R. Andrew, Progr. NMR Spectrosc. 8, 1 (1971).CrossRefGoogle Scholar
  16. 16.
    D. D. Traficante, J. A. Sims, and M. Mulcay, J. Mag. Res. 15, 484 (1974).CrossRefGoogle Scholar
  17. 17.
    H. C. Dorn, L. Simeral, J. J. Natterstad, and G. E. Maciel, J. Mag. Res. 18, 1 (1975).CrossRefGoogle Scholar
  18. 18.
    R. R. Ernst and W. A. Anderson, Rev. Sci. Instrum. 37, 93 (1966). See also other references cited here.CrossRefGoogle Scholar
  19. 19.
    J. B. Grutzner and R. E. Santini, J. Mag. Res. 19, 173 (1975).CrossRefGoogle Scholar
  20. 20.
    F. A. L. Anet, Topics C-13 NMR Spectrosc. 1 (1974).Google Scholar
  21. 21.
    G. C. Levy, I. R. Peat, R. Rosanske, and S. Parks, J. Mag. Res. 18, 205 (1975).CrossRefGoogle Scholar
  22. 22.
    B. L. Tomlinson and H. D. W. Hill, J. Chem. Phys. 59, 1775 (1973).CrossRefGoogle Scholar
  23. 23.
    R. Freeman and H. D. W. Hill, J. Mag. Res. 4, 366 (1971).CrossRefGoogle Scholar
  24. 24.
    K. G. R. Pachler and P. L. Wessels, J. Mag. Res. 12, 337 (1973).CrossRefGoogle Scholar
  25. 25.
    S. Sorenson, R. S. Hansen, and H. J. Jakobsen, J. Mag. Res. 14, 243 (1974).CrossRefGoogle Scholar
  26. 26.
    H. J. Jakobsen, S. A. Linde, and S. Sorensen, J. Mag. Res. 15, 385 (1974).CrossRefGoogle Scholar
  27. 27.
    H. S. Gutowsky, D. M. McCall, and C. P. Slichter, J. Chem. Phys. 21, 279 (1953).CrossRefGoogle Scholar
  28. 28.
    C. S. Johnson, Advan. Mag. Res. 1, 33 (1965).Google Scholar
  29. 29.
    R. A. Hoffman, Advan. Mag. Res. 4, 87 (1970).Google Scholar
  30. 30.
    S. Forsen and R. A. Hoffman, J. Chem. Phys. 39, 2892 (1963).CrossRefGoogle Scholar
  31. 31.
    H. S. Gutowsky, R. L. Void, and E. J. Wells, J. Chem. Phys. 43, 4107 (1965).CrossRefGoogle Scholar
  32. 32.
    R. L. Void, R. R. Void, and H. E. Simon, J. Mag. Res. 11, 283 (1973).CrossRefGoogle Scholar
  33. 33.
    T. K. Leipert, J. H. Noggle, W. J. Freeman, and D. L. Dalrymple, J. Mag. Res. 19, 208 (1975).CrossRefGoogle Scholar
  34. 34.
    A. Pines, M. G. Gibby, and J. S. Waugh, J. Chem. Phys. 59, 569 (1973).CrossRefGoogle Scholar
  35. 35.
    T. D. Inch, J. Am. Chem. Soc. 31, 1825 (1966).Google Scholar
  36. 36.
    J. A. Pople, W. G. Schneider, and H. J. Bernstein, High Resolution Nuclear Magnetic Resonance, McGraw-Hill, New York, 1959.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Thomas C. Farrar
    • 1
  1. 1.Chemistry DivisionNational Science FoundationUSA

Personalised recommendations