Hadamard Transform Analytical Systems

  • Martin Harwit
Part of the Modern Analytical Chemistry book series (MOAC)


A spectrometer sorts electromagnetic radiation into its component colors. Each color corresponds to a particular value of a parameter—wavelength, energy, or frequency—and the resulting spectrum displays the intensity of radiation for each value of this parameter.


Spectral Element Cyclic Code Entrance Slit Exit Plane Mask Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Harwit and J. A. Decker, Jr., Modulation Techniques in Spectrometry, in: Reports on Progress in Optics XII, pp. 101–162 ( E. Wolf, ed.), North-Holland, Amsterdam, 1974.Google Scholar
  2. 2.
    N. J. A. Sloane and M. Harwit, Masks for Hadamard transform optics, and weighing designs, Appl. Opt. 15, 107–114 (1976).CrossRefGoogle Scholar
  3. 3.
    F. Yates, Complex experiments, J. Roy. Stat. Soc. Supp. 2, 181–247 (1935).CrossRefGoogle Scholar
  4. 4.
    M. J. E. Gollay, Multi-slit spectrometry, J. Opt. Soc. Am. 39, 437–444 (1949); Static multislit spectrometry and its application to the panoramic display of infrared spectra, J. Opt. Soc. Am. 41, 468–472 (1951).CrossRefGoogle Scholar
  5. 5.
    R. N. Ibbett, D. Aspinall, and J. F. Grainger, Real-time multiplexing of dispersed spectra in any wavelength region, Appl Opt. 7, 1089–1093 (1968).CrossRefGoogle Scholar
  6. 6.
    J. A. Decker, Jr., and M. Harwit, Sequential encoding with multislit spectrometers, Appl. Opt. 7, 2205–2209 (1968).CrossRefGoogle Scholar
  7. 7.
    P. Gottlieb, A television scanning scheme for a detector-noise-limited system, IEEE Trans. Inform. Theor. IT-14, 428–433 (1968).Google Scholar
  8. 8.
    N. J. A. Sloane, T. Fine, P. G. Phillips, and M. Harwit, Codes for multiplex spectrometry, Appl. Opt. 8, 2103–2106 (1969).CrossRefGoogle Scholar
  9. 9.
    S. W. Golomb, ed., Digital Communications with Space Applications, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.Google Scholar
  10. 10.
    Marshall Hall, Jr., Combinatorial Theory, p. 204, Blaisdell, Waltham, Massachusetts, 1967.Google Scholar
  11. 11.
    E. D. Nelson and M. L. Fredman, Hadamard spectroscopy, J. Opt. Soc. Am. 60, 1664–1669 (1971).CrossRefGoogle Scholar
  12. 12.
    H. Hotelling, Self improvements in weighing and other experimental techniques, Ann. Math. Stat. 15, 297–306 (1971).CrossRefGoogle Scholar
  13. 13.
    M. Harwit, P. G. Phillips, T. Fine, and N. J. A. Sloane, Doubly multiplexed dispersive spectrometers, Appl. Opt. 9, 1149–1154 (1970).CrossRefGoogle Scholar
  14. 14.
    M. Harwit, P. G. Phillips, L. W. King, and D. A. Briotta, Jr., Two asymmetric Hadamard transform spectrometers, Appl. Opt. 13, 2669–2674 (1974).CrossRefGoogle Scholar
  15. 15.
    P. G. Phillips and M. Harwit, Doubly multiplexing dispersive spectrometer, Appl. Opt. 10, 2780–2781 (1971).CrossRefGoogle Scholar
  16. 16.
    Ming Hing Tai, D. A. Briotta, Jr., N. Kamath, and M. Harwit, Practical multi-spectrum Hadamard transform spectrometer, Appl. Opt. 14, 2533–2536 (1975).CrossRefGoogle Scholar
  17. 17.
    John A. Decker, Jr., Experimental realization of the multiplex advantage with a Hadamard-transform spectrometer, Appl. Opt. 10, 510–514 (1971).CrossRefGoogle Scholar
  18. 18.
    John A. Decker, Jr., Private communication.Google Scholar
  19. 19.
    P. G. Phillips and D. A. Briotta, Jr., Hadamard-transform spectrometry of the atmospheres of Earth and Jupiter, Appl. Opt. 13, 2233–2235 (1974).CrossRefGoogle Scholar
  20. 20.
    T. Hirschfeld and G. Wintjes, Fourier transform vs. Hadamard transform spectroscopy, Appl. Opt. 12, 2876–2880 (1973); Fourier transform vs. Hadamard transform spectroscopy: Author’s reply to comments, Appl. Opt. 13, 1740–1741 (1974).CrossRefGoogle Scholar
  21. 21.
    J. A. Decker, Jr., Comments on: Fourier transform vs. Hadamard transform spectrometry, Appl. Opt. 13, 1296–1297 (1974).CrossRefGoogle Scholar
  22. 22.
    R. D. Swift, R. B. Wattson, J. A. Decker, Jr., R. Paganetti, and M. Harwit, Hadamard transform imager and imaging spectrometer, Appl. Opt. 15, 1595–1609 (1976).CrossRefGoogle Scholar
  23. 23.
    M. Harwit, Spectrometric imager, Appl. Opt. 10, 1415–1421 (1971); Spectrometric imager, Part 2, Appl. Opt. 12, 285–288 (1973); covered by U.S. Patent No. 3, 720, 469.Google Scholar
  24. 24.
    A. Girard, Spectrometre a grilles, Appl. Opt. 2, 79–87 (1963).CrossRefGoogle Scholar
  25. 25.
    L. Mertz, Transformations in Optics, John Wiley and Sons, New York, 1965.Google Scholar
  26. 26.
    J. Strong, Achromatic doublet lenses for infrared radiation, Appl. Opt. 10, 1439–1443 (1971).CrossRefGoogle Scholar
  27. 27.
    P. Hansen and J. Strong, High resolution Hadamard transform spectrometer, Appl. Opt. 11, 502–506(1972).CrossRefGoogle Scholar
  28. 28.
    A. Rosencwaig, Photoacoustic spectroscopy: A new tool for investigation of solids, Anal. Chem. 47, 592A–604A (1975).CrossRefGoogle Scholar
  29. 29.
    M. E. Long, R. L. Swofford, and A. C. Albrecht, Thermal lens technique: A new method of absorption spectroscopy, Science 191, 183–184 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Martin Harwit
    • 1
  1. 1.Center for Radiophysics and Space ResearchCornell UniversityIthacaUSA

Personalised recommendations