Advertisement

Infrared Fourier Transform Spectrometry: Applications to Analytical Chemistry

  • Peter R. Griffiths
Part of the Modern Analytical Chemistry book series (MOAC)

Abstract

Before the applications can be discussed for which the use of FT—IR spectrometers give the greatest advantage over grating spectrometers, we will first discuss the various factors leading to differences in the performance of the two types of spectrometer. Obviously the performance of any type of spectrometer is dependent on the nature of its components, but in this section we shall only compare typical commercially available mid-infrared spectrometers. Thus for the purpose of illustration, the FT—IR spectrometer will contain a rapid-scanning Michelson interferometer with 2-in.-diameter mirrors, a Ge: KBr beamsplitter and a TGS detector. The grating spectrometer will be an optical null instrument with 5.2 × 5.2 cm interchangeable gratings and a thermocouple detector.

Keywords

Attenuate Total Reflection Fourier Spectrometer Grating Spectrometer Diamond Cell Methyl Nitrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. R. Griffiths, H. J. Sloane, and R. W. Hannah, Appl. Spectrosc. 31, 485 (1977).CrossRefGoogle Scholar
  2. 2.
    A. T. Stair, Jr., Fourier spectroscopy at the Air Force Cambridge Research Laboratories, Aspen Int. Conf. Fourier Spectrosc., 1970, Air Force Cambridge Research Laboratories Special Report, No. 114 (April, 1971 ), p. 127.Google Scholar
  3. 3.
    M. J. D. Low and S. K. Freeman, Anal. Chem. 39, 194 (1967).CrossRefGoogle Scholar
  4. 4.
    M. J. D. Low, Anal. Letters 1, 819 (1968).Google Scholar
  5. 5.
    M. J. D. Low, H. Mark, and A. J. Goodsel, J. Paint Technol. 43 (562), 49 (1971).Google Scholar
  6. 6.
    K. L. Kizer, Am. Lab. 5 (6), 40 (1973).Google Scholar
  7. 7.
    L. V. Azarraga, Improved sensitivity of on-the-fly GC-IR spectroscopy, Paper No. 334, Pittsburgh Conf. Anal. Chem. Appl. Spectrosc., Cleveland, Ohio (1976).Google Scholar
  8. 8.
    P. R. Griffiths, unpublished work (1976).Google Scholar
  9. 9.
    K. L. Kizer, A. W. Mantz, and L. C. Bonar, Am. Lab. 7 (5), 85 (1975).Google Scholar
  10. 10.
    M. J. D. Low, R. Epstein, and A. C. Bond, J. Chem. Phys. 48, 2386 (1968).CrossRefGoogle Scholar
  11. 11.
    R. P. Oertel, H. C. Smitherman, and A. J. Fehl, Appl. Spectrosc. 29, 195 (1975).CrossRefGoogle Scholar
  12. 12.
    J. O. Lephardt and G. Vilcins, Appl. Spectrosc. 29, 221 (1975).CrossRefGoogle Scholar
  13. 13.
    G. Vilcins and J. O. Lephardt, Chem. Ind., p. 974 (November, 1975 ).Google Scholar
  14. 14.
    S. A. Liebman, D. H. Ahlstrom, and P. R. Griffiths, Appl. Spectrosc. 30, 355 (1976).CrossRefGoogle Scholar
  15. 15.
    R. E. Murphy and H. Sakai, Application of the Fourier spectroscopy technique to the study of relaxation phenomena, Aspen Int. Conf. Fourier Spectrosc., 1970, Air Force Cambridge Research Laboratories Special Report, No. 114 (April, 1971 ), p. 301.Google Scholar
  16. 16.
    A. Mantz, Time resolved spectroscopy, in: Fourier Transform IR: Applications to Chemical Systems ( J. R. Ferraro and L. J. Basile, eds.), Academic Press, New York, 1978.Google Scholar
  17. 17.
    R. T. Hall and J. M. Dowling, J. Chem. Phys. 45, 1899 (1966).CrossRefGoogle Scholar
  18. 18.
    H. A. Gebbie, N. W. B. Stone, G. Topping, E. K. Gora, S. A. Clough, and F. X. Kneizys, J. Mol. Spectrosc. 19, 7 (1966).CrossRefGoogle Scholar
  19. 19.
    D. R. Bosomworth and H. P. Gush, Can. J. Phys. 43, 751 (1965).CrossRefGoogle Scholar
  20. 20.
    T. R. Borgers and H. L. Strauss, J. Chem. Phys. 45, 947 (1966).CrossRefGoogle Scholar
  21. 21.
    J. A. Greenhouse and H. L. Strauss, J. Chem. Phys. 50, 124 (1969).CrossRefGoogle Scholar
  22. 22.
    R. F. Lake and H. W. Thompson, Proc. Roy. Loc. (London) A291, 469 (1966).CrossRefGoogle Scholar
  23. 23.
    R. F. Lake and H. W. Thompson, Spectrochim. Acta 24A, 1321 (1968).CrossRefGoogle Scholar
  24. 24.
    M. Goldstein and W. D. Unsworth, Spectrochim. Acta 28A, 1297 (1972).CrossRefGoogle Scholar
  25. 25.
    D. M. Adams, S. J. Payne, and K. Martin, Appl. Spectrosc. 27, 377 (1973).CrossRefGoogle Scholar
  26. 26.
    W. A. Guillory and G. R. Smith, Appl. Spectrosc. 27, 137 (1973).CrossRefGoogle Scholar
  27. 27.
    J. E. Harries, N. P. L. Report No. DES 16 (1972).Google Scholar
  28. 28.
    J. E. Beckman and J. E. Harries, Appl. Opt. 14, 470 (1975).CrossRefGoogle Scholar
  29. 29.
    S. S. T. King, J. Ag. Food Chem. 21, 526 (1973).Google Scholar
  30. 30.
    D. H. Anderson and T. E. Wilson, Anal. Chem. 47, 2482 (1975).CrossRefGoogle Scholar
  31. 31.
    P. R. Griffiths and F. Block, Appl. Spectrosc. 27, 432 (1972).Google Scholar
  32. 32.
    K. L. Kizer, Digilab Inc., unpublished work (1976).Google Scholar
  33. 33.
    J. L. Koenig and D. L. Tabb, Can. Res. Develop. 7, 25 (1975).Google Scholar
  34. 34.
    M. J. D. Low, A. J. Goodsel, and N. Takezawa, Env. Sci. Technol. 5, 1191 (1971).CrossRefGoogle Scholar
  35. 35.
    A. J. Goodsel, M. J. D. Low, and N. Takezawa, Env. Sci. Technol. 6, 268 (1972).CrossRefGoogle Scholar
  36. 36.
    C. J. Percival and P. R. Griffiths, Anal. Chem. 47, 154 (1975).CrossRefGoogle Scholar
  37. 37.
    M. M. Gomez-Taylor, D. Kuehl, and P. R. Griffiths, Appl. Spectrosc. 30, 447 (1976).CrossRefGoogle Scholar
  38. 38.
    J. T. Stoklosa, J. Rydzak, and P. R. Griffiths, unpublished work (1975).Google Scholar
  39. 39.
    J. O. Alben, G. H. Bare, and P. A. Bromberg, Nature (London) 252, 736 (1974).CrossRefGoogle Scholar
  40. 40.
    G. H. Bare, J. O. Alben, and P. A. Bromberg, Biochemistry 14, 1578 (1975).CrossRefGoogle Scholar
  41. 41.
    P. L. Hanst, A. S. Lefohn, and B. W. Gay, Appl. Spectrosc. 27, 188 (1973).CrossRefGoogle Scholar
  42. 42.
    P. L. Hanst, W. E. Wilson, R. K. Patterson, B. W. Gay, L. W. Chaney, and C. S. Burton, A spectroscopic study of Pasadena smog, EPA Report No. 650/4-75-006 (February, 1975 ).Google Scholar
  43. 43.
    J. L. Koenig, Appl. Spectrosc. 29, 293 (1975).Google Scholar
  44. 45.
    T. Hirschfeld and K. Kizer, Appl. Spectrosc. 29, 345 (1975).CrossRefGoogle Scholar
  45. 46.
    T. Hirschfeld, Appl. Spectrosc. 29, 524 (1975).CrossRefGoogle Scholar
  46. 47.
    R. M. Gendreau and P. R. Griffiths, Anal. Chem. 48, 1910 (1976).CrossRefGoogle Scholar
  47. 48.
    M. J. D. Low, Appl. Opt. 6, 1503 (1967).Google Scholar
  48. 49.
    R. R. Willey, Appl. Spectrosc. 30, 593 (1976).Google Scholar
  49. 50.
    R. J. Jakobsen and J. P. Crowley, The use of FT-IR and ATR for the study of organic thin films. II. Adsorption of blood plasma proteins on polymer surfaces, Paper No. 386, Pittsburgh Conf. Anal. Chem. Appl. Spectrosc., Cleveland, Ohio (1976).Google Scholar
  50. 51.
    M. J. D. Low, A. J. Goodsel, and H. Mark, The modification and some uses of a commercial infrared Fourier transform spectrometer, in: Molecular Spectroscopy 1971 ( P. Hepple, ed.), Institute of Petroleum, London, 1972.Google Scholar
  51. 52.
    J. B. L. Harkness, Ph.D. Dissertation, MIT, 1970.Google Scholar
  52. 53.
    P. R. Griffiths, Appl. Spectrosc. 26, 73 (1972).CrossRefGoogle Scholar
  53. 54.
    M. J. D. Low and I. Coleman, Appl. Opt. 5, 1453 (1966).CrossRefGoogle Scholar
  54. 55.
    M. J. D. Low and F. K. Clancy, Env. Sci. Technol. 1, 73 (1967).CrossRefGoogle Scholar
  55. 56.
    H. W. Prengle, C. A. Morgan, C.-S. Fang, L.-K. Huang, P. Campani, and W. W. Wu, Env. Sci. Technol. 7, 417 (1973).CrossRefGoogle Scholar
  56. 57.
    J. L. Lauer and M. E. Peterkin, Infrared emission spectra from lubricant films in operating bearings by Fourier methods, Paper No. 333, Pittsburgh Conf. Anal. Chem. Appl. Spectrosc., Cleveland, Ohio (1976).Google Scholar
  57. 58.
    J. G. Moehlmann, J. T. Gleaves, J. W. Hudgens, and J. D. MacDonald, J. Chem. Phys. 60, 4790 (1974).CrossRefGoogle Scholar
  58. 59.
    J. G. Moehlmann and J. D. McDonald, J. Chem. Phys. 62, 3052 (1975).CrossRefGoogle Scholar
  59. 60.
    J. G. Moehlmann and J. D. McDonald, J. Chem. Phys. 62, 3061 (1975).CrossRefGoogle Scholar
  60. 61.
    G. Horlick and W. K. Yuen, Anal. Chem. 41, 775A (1975).Google Scholar
  61. 62.
    J. D. Winefordner, R. Avni, T. L. Chester, J. J. Fitzgerald, L. P. Hart, D. J. Johnson, and F. W. Plankey, Spectrochim. Acta 31B, 1 (1976).CrossRefGoogle Scholar
  62. 63.
    J. G. Conway, J. Blaise, and J. Vergés, Spectrochim. Acta 31B, 31 (1976).CrossRefGoogle Scholar
  63. 64.
    J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, and G. Michel, Nouv. Rev. Opt. Appl. 1, 3 (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Peter R. Griffiths
    • 1
  1. 1.Department of ChemistryOhio UniversityAthensOhioUSA

Personalised recommendations