Advertisement

Fourier Transform Infrared Spectrometry: Theory and Instrumentation

  • Peter R. Griffiths
Part of the Modern Analytical Chemistry book series (MOAC)

Abstract

Over the past decade Fourier transform infrared spectrometry (FT—IR) has become an important tool for vibrational spectroscopists and analytical chemists. In this chapter we will discuss the theory of FT—IR and show how it relates to instrumental design. The performance of FT—IR spectrometers will be compared to that of conventional grating spectrometers, and illustrated in the next chapter through descriptions of several applications where FT—IR has been used to advantage.

Keywords

Michelson Interferometer Noise Equivalent Power Indium Antimonide Rayleigh Criterion Lead Selenide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Bell, Introductory Fourier Transform Spectroscopy, Chapter 5, Academic Press, New York, 1972.Google Scholar
  2. 2.
    R. J. Anderson and P. R. Griffiths, Anal. Chem. 47, 2339 (1975).CrossRefGoogle Scholar
  3. 3.
    R. J. Bell, Introductory Fourier Transform Spectroscopy, Chapter 11, Academic Press, New York, 1972.Google Scholar
  4. 4.
    W. H. Steel, Interferometers for Fourier spectroscopy, Aspen Int. Conf Fourier Spectrosc., 1970, Air Force Cambridge Research Laboratories Special Report No. 114 (April, 1971 ), p. 43.Google Scholar
  5. 5.
    T. Hirschfeld, Signal-noise ratios in Fourier transform spectrometry, 1976 Pittsburgh Conf Anal. Chem. Appi. Spectrosc. (Cleveland, Ohio), paper no. 385.Google Scholar
  6. 6.
    J. Chamberlain, Infrared Phys. 11, 25 (1971).CrossRefGoogle Scholar
  7. 7.
    J. Chamberlain and H. A. Gebbie, Infrared Phys. 11, 57 (1971).CrossRefGoogle Scholar
  8. 8.
    J. Connes, P. Connes, and J. P. Maillard, J. Phys. 28, C2: 120 (1967).Google Scholar
  9. 9.
    G. Guelachvili and J. P. Maillard, Fourier spectroscopy from 106 samples, Aspen Int. Conf Fourier Spectrosc., 1970, Air Force Cambridge Research Laboratories Special Report No. 114 (April, 1971 ), p. 151.Google Scholar
  10. 10.
    M. Born and E. Wolf, Principles of Optics, Macmillan, New York, 1964.Google Scholar
  11. 11.
    P. Vogel and L. Genzel, Infrared Phys. 4, 257 (1964).CrossRefGoogle Scholar
  12. 12.
    H. Sakai, Consideration of the signal-to-noise ratio in Fourier spectroscopy, Aspen Int. Conf. Fourier Spectrosc., 1970, Air Force Cambridge Research Laboratories Special Report No. 114 (April, 1971 ), p. 19.Google Scholar
  13. 13.
    P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy, pp. 120–125, Wiley- Interscience, New York, 1975.Google Scholar
  14. 14.
    P. L. Richards, J. Opt. Soc. Am. 54, 1474 (1964).CrossRefGoogle Scholar
  15. 15.
    M. J. E. Golay, Rev. Sci. Instrum. 18, 347, 357 (1947).Google Scholar
  16. 16.
    J. E. Stewart, Infrared Spectroscopy: Experimental Methods and Techniques, Chapter 11, Marcel Dekker, New York, 1970.Google Scholar
  17. 17.
    Cathodeon Ltd., Nuffield Road, Cambridge, CB4 1TF, England.Google Scholar
  18. 18.
    J. G. Moehlmann, J. T. Gleaves, J. W. Hudgens, and J. D. MacDonald, J. Chem. Phys. 60, 4790 (1974).Google Scholar
  19. 19.
    T. Hirschfeld, Appi Spectrosc. 30, 68 (1976).CrossRefGoogle Scholar
  20. 20.
    F. Levy, R. C. Milward, S. Bras, and R. leToullec, “Real-time” far infrared Fourier spectroscopy using a small digital computer, Aspen Int. Conf. Fourier Spectrosc., 1970, Air Force Cambridge Research Laboratories Special Report No. 114 (April, 1971 ), p. 331.Google Scholar
  21. 21.
    H. Yoshinaga, S. Fujita, S. Minami, Y. Suemoto, M. Inoue, K. Chiba, K. Nakano, S. Yoshida, and H. Sugimori, Appi. Opt. 5, 1159 (1966).CrossRefGoogle Scholar
  22. 22.
    P. R. Griffiths, Appi. Spectrosc. 29, 11 (1975).CrossRefGoogle Scholar
  23. 23.
    Nicolet Instrument Corp., 5225 Verona Road, Madison, Wisconsin, 53711.Google Scholar
  24. 24.
    Digilab Inc., 237 Putnam Avenue, Cambridge, Massachusetts, 02139.Google Scholar
  25. 25.
    ID AC Division of Carson Systems, Inc., 4630 Campus Drive, Newport Beach California, 92660.Google Scholar
  26. 26.
    H. DeLouis, Fourier transformation of a 106 samples interferogram, Aspen Int. Conf. Fourier Spectrosc., 1970, Air Force Cambridge Research Laboratories Special Report No. 114 (April, 1971 ), p. 145.Google Scholar
  27. 27.
    J. Connes, Computing problems in Fourier spectroscopy, Aspen Int. Conf. Fourier Spectrosc., 1970, Air Force Cambridge Research Laboratories Special Report No. 114 (April, 1971 ), p. 83.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Peter R. Griffiths
    • 1
  1. 1.Department of ChemistryOhio UniversityAthensUSA

Personalised recommendations