Advertisement

Applications of the FFT in Electrochemistry

  • Peter R. Griffiths
Part of the Modern Analytical Chemistry book series (MOAC)

Abstract

Most modern electroanalytical techniques are basically electrochemical relaxation measurements (ERM), in which one observes a time-varying response from some type of electrochemical cell to an applied perturbation such as current, potential, or charge. The observed relationship between the response and the perturbation is known as the transfer function and provides analytical data, kinetic information, and/or mechanistic information on a variety of processes that can occur in the electrode, in the electrolyte bulk, or in the interfacial regions. Perhaps the most common experiment is one in which a cell voltage perturbation is created and the cell current response is measured. Typical techniques that fall into this category are DC, AC, and pulse polarography, linear sweep and triangular wave voltammetry, and potential step chronoamperometry.

Keywords

Elsevier Publishing Company Autopower Spectrum Frequency Domain Spectrum Admittance Spectrum Potential Step Chronoamperometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. E. Smith, Anal. Chem. 48, 517A (1976).Google Scholar
  2. 2.
    D. E. Smith, Crit. Rev. Anal. Chem. 2, 247 (1971).CrossRefGoogle Scholar
  3. 3.
    E. R. Brown, T. G. McCord, D. E. Smith, and D. D. DeFord, Anal Chem. 38, 1119 (1966).CrossRefGoogle Scholar
  4. 4.
    E. R. Brown, D. E. Smith, and G. L. Booman, Anal. Chem. 40, 1411 (1968).CrossRefGoogle Scholar
  5. 5.
    E. R. Brown, H. L. Hung, T. G. McCord, D. E. Smith, and G. L. Booman, Anal. Chem. 40, 1424 (1968).CrossRefGoogle Scholar
  6. 6.
    D. E. Smith, in: Electroanalytical Chemistry, Vol. 1, pp. 1–155 ( A. J. Bard, ed.), Marcel Dekker, New York, 1966.Google Scholar
  7. 7.
    M. Sluyters-Rehbach and J. H. Sluyters, in: Electroanalytic Chemistry, Vol. 4, pp. 1–128 ( A. J. Bard, ed.), Marcel Dekker, New York, 1970.Google Scholar
  8. 8.
    S. C. Creason, J. W. Hayes, and D. E. Smith, Electroanal. Chem. 47, A1 (1973).CrossRefGoogle Scholar
  9. 9.
    D. E. Smith, in: Information Chemistry: Computer Assisted Chemical Research Design, pp. 125–142 ( H. B. Mark, Jr., and S. Fujiwara, eds.), University of Tokyo Press, Tokyo, Japan, 1975.Google Scholar
  10. 10.
    D. E. Smith, in: Topics in Pure and Applied Electrochemistry, pp. 43–67, SAEST, Karaikudi, India, 1975.Google Scholar
  11. 11.
    A. A. Pilla, J. Electrochem. Soc. 117, 467 (1970).CrossRefGoogle Scholar
  12. 12.
    K. Doblhofer and A. A. Pilla, J. Electroanal. Chem. 39, 91 (1971).CrossRefGoogle Scholar
  13. 13.
    N. Weiner, Nonlinear Problems in Random Theory, MIT Press, Cambridge, Massachusetts, 1958.Google Scholar
  14. 14.
    D. E. Smith, Anal. Chem. 48, 221A (1976).Google Scholar
  15. 15.
    D. E. Glover, Ph.D. Dissertation, Northwestern Univ., Evanston, Illinois, (1973).Google Scholar
  16. 16.
    S. C. Creason, Ph.D. Dissertation, Northwestern Univ., Evanston, Illinois, (1973).Google Scholar
  17. 17.
    J. E. B. Randies and K. W. Somerton, Trans. Faraday Soc. 48, 937, 951 (1952).CrossRefGoogle Scholar
  18. 18.
    S. C. Creason and D. E. Smith, Anal. Chem. 45, 2401 (1973).CrossRefGoogle Scholar
  19. 19.
    R. deLeeuwe, M. Sluyters-Rehbach, and J. H. Sluyters, Electrochim. Acta 12, 1593 (1967).CrossRefGoogle Scholar
  20. 20.
    R. deLeeuwe, M. Sluyters-Rehbach, and J. H. Sluyters, Electrochim. Acta 14, 1183 (1969).CrossRefGoogle Scholar
  21. 21.
    H. Kojima and S. Fujiwara, Bull. Chem. Soc. Japan 44, 2158 (1971).CrossRefGoogle Scholar
  22. 22.
    D. E. Glover and D. E. Smith, Anal. Chem. 45, 1869 (1973).CrossRefGoogle Scholar
  23. 23.
    S. C. Creason and D. E. Smith, J. Electroanal. Chem. 36, A1 (1972).CrossRefGoogle Scholar
  24. 24.
    S. C. Creason and D. E. Smith, J. Electroanal. Chem. 40, A1 (1972).CrossRefGoogle Scholar
  25. 25.
    J. W. Hayes, D. E. Glover, D. E. Smith, and M. W. Overton, Anal. Chem. 45, 277 (1973).CrossRefGoogle Scholar
  26. 26.
    K. R. Bullock and D. E. Smith, Anal. Chem. 46, 1069 (1974).CrossRefGoogle Scholar
  27. 27.
    J. W. Hayes, D. E. Smith, I. Ruzik, J. R. Delmastro, and G. L. Booman, J. Electronal. Chem. 51, 245, 269 (1974).CrossRefGoogle Scholar
  28. 28.
    D. L. Rabenstein and R. J. Kula, J. Am. Chem. Soc. 91, 2492 (1969).CrossRefGoogle Scholar
  29. 29.
    T. Rohko, M. Kogoma, and S. Aoyagi, J. Electroanal. Chem. 38, 45 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Peter R. Griffiths
    • 1
  1. 1.Department of ChemistryOhio UniversityAthensUSA

Personalised recommendations