Advertisement

Transform Techniques in Chemistry: Past, Present, and Future

  • Peter R. Griffiths
Part of the Modern Analytical Chemistry book series (MOAC)

Abstract

Although the use of transform techniques in analytical chemistry and applied spectroscopy has only become widespread in the past five years, the history of this subject can be traced back to the middle of the nineteenth century when the effect of the interference of light was first used to derive spectroscopic information. In 1862, Fizeau(1) used Newton’s rings to show that the yellow sodium radiation was a doublet whose separation was 1/980 of their average wavelength. At the end of the century Michelson designed the interferometer, which now bears his name.(2,3) The initial uses of this instrument for spectroscopic purposes concerned the determination of spectral profiles through the use of the visibility technique,(4) which is essentially a study of the envelope of what we now call the interferogram. Rayleigh(5) pointed out that a unique spectral distribution cannot be found from the visibility curve itself, and the Fourier transform of the interferogram is needed to calculate the spectrum unequivocally.

Keywords

Electron Spin Resonance Radio Frequency Transform Technique Michelson Interferometer Free Induction Decay Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Fizeau, Ann. Chim. Phys. (3), 66, 429 (1862).Google Scholar
  2. 2.
    A. A. Michelson, Phil. Mag. (5), 31, 256 (1891).Google Scholar
  3. 3.
    A. A. Michelson, Phil. Mag. (5), 34, 280 (1892).Google Scholar
  4. 4.
    M. Born and E. Wolf, Principles of Optics, 2nd ed., pp. 320ff, The Macmillan Co., New York, 1964.Google Scholar
  5. 5.
    Lord Rayleigh, Phil. Mag. (5), 34, 407 (1892).Google Scholar
  6. 6.
    H. Rubens and R. W. Wood, Phil. Mag. 21, 249 (1911).Google Scholar
  7. 7.
    P. Jacquinot and C. J. Dufour, J. Rech. C.N.R.S. 6, 91 (1948).Google Scholar
  8. 8.
    P. Jacquinot, Rep. Prog. Phys. 23, 267 (1960).CrossRefGoogle Scholar
  9. 9.
    P. B. Fellgett, Ph.D. thesis, University of Cambridge, 1951.Google Scholar
  10. 10.
    F. Bloch, Phys. Rev. 70, 460 (1946).CrossRefGoogle Scholar
  11. 11.
    F. Bloch, W. W. Hansen, and M. Packard, Phys. Rev. 69, 127 (1946).CrossRefGoogle Scholar
  12. 12.
    H. C. Torrey, Phys. Rev. 76, 1059 (1949).Google Scholar
  13. 13.
    E. L. Hahn, Phys. Rev. 80, 580 (1950).Google Scholar
  14. 14.
    I. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957).CrossRefGoogle Scholar
  15. 15.
    R. R. Ernst and W. A. Anderson, Rev. Sei. Instrum. 37, 93 (1966).CrossRefGoogle Scholar
  16. 16.
    A. G. Marshall and M. B. Comisarow, Anal. Chem. 47, 491A (1975).CrossRefGoogle Scholar
  17. 17.
    J. A. Decker, Anal. Chem. 44, 127A (1972).Google Scholar
  18. 18.
    P. R. Griffiths, Anal. Chem. 46, 645 A (1974).Google Scholar
  19. 19.
    G. Horlick and W. K. Yuen, Anal. Chem. 47, 775A (1975).Google Scholar
  20. 20.
    G. A. Gray, Anal. Chem. 47, 547A (1975).Google Scholar
  21. 21.
    D. E. Smith, Anal. Chem. 48, 221A (1976).Google Scholar
  22. 22.
    D. E. Smith, Anal. Chem. 48, 517A (1976).Google Scholar
  23. 23.
    J. E. Sarneski and C. N. Reilley, Anal. Chem. 48, 1303 (1976).CrossRefGoogle Scholar
  24. 24.
    M. L. Lee, M. Novotny, and K. D. Bartle, Anal. Chem. 48, 1566 (1976).CrossRefGoogle Scholar
  25. 25.
    H. C. Dorn and D. L. Wooton, Anal. Chem. 48, 2146 (1976).CrossRefGoogle Scholar
  26. 26.
    J. E. Sarneski, H. L. Surprenant, F. K. Molen, and C. N. Reilley, Anal. Chem. 47, 2116 (1975).CrossRefGoogle Scholar
  27. 27.
    O. A. Subbartin and N. M. Sergeyev, Anal. Chem. 48, 545 (1976).CrossRefGoogle Scholar
  28. 28.
    D. W. Vidrine and P. E. Petersen, Anal. Chem. 48, 1301 (1976).CrossRefGoogle Scholar
  29. 29.
    J. N. Shoolery and W. L. Budde, Anal. Chem. 48, 1458 (1976).CrossRefGoogle Scholar
  30. 30.
    E. G. Brame and F. W. Yeager, Anal. Chem. 48, 709 (1976).CrossRefGoogle Scholar
  31. 31.
    T. W. Gurley and W. M. Ritchey, Anal Chem. 47, 1444 (1975).CrossRefGoogle Scholar
  32. 32.
    T. W. Gurley and W. M. Ritchey, Anal. Chem. 48, 1137 (1976).CrossRefGoogle Scholar
  33. 33.
    A. Attalla and R. C. Bowman, Anal. Chem. 47, 728 (1975).CrossRefGoogle Scholar
  34. 34.
    J. O. Lephardt and B. J. Bulkin, Anal. Chem. 45, 706 (1973).CrossRefGoogle Scholar
  35. 35.
    C. J. Percival and P. R. Griffiths, Anal. Chem. 47, 154 (1975).CrossRefGoogle Scholar
  36. 36.
    D. H. Anderson and T. E. Wilson, Anal. Chem. 47, 2482 (1975).CrossRefGoogle Scholar
  37. 37.
    R. T. Yang and M. J. D. Low, Anal. Chem. 45, 2014 (1973).CrossRefGoogle Scholar
  38. 38.
    R. M. Gendreau, P. R. Griffiths, L. E. Ellis, and J. R. Anfinsen, Anal. Chem. 48, 1907 (1976).CrossRefGoogle Scholar
  39. 39.
    R. M. Gendreau and P. R. Griffiths, Anal. Chem. 48, 1910 (1976).CrossRefGoogle Scholar
  40. 40.
    F. W. Plankey, T. H. Glenn, L. P. Hart, and J. D. Winefordner, Anal. Chem. 46, 1000 (1974).CrossRefGoogle Scholar
  41. 41.
    T. L. Chester, J. J. Fitzgerald, and J. D. Winefordner, Anal. Chem. 48, 779 (1976).CrossRefGoogle Scholar
  42. 42.
    D. E. Glover and D. E. Smith, Anal. Chem. 45, 1869 (1973).CrossRefGoogle Scholar
  43. 43.
    S. C. Creason and D. E. Smith, Anal. Chem. 45, 2401 (1973).CrossRefGoogle Scholar
  44. 44.
    K. R. Bullock and D. E. Smith, Anal Chem. 46, 1069 (1974).CrossRefGoogle Scholar
  45. 45.
    K. R. Bullock and D. E. Smith, Anal Chem. 46, 1567 (1974).CrossRefGoogle Scholar
  46. 46.
    P. C. Kelley and G. Horlick, Anal Chem. 45, 518 (1973).CrossRefGoogle Scholar
  47. 47.
    R. C. Williams, R. M. Swanson, and C. L. Wilkins, Anal Chem. 46, 1803 (1974).CrossRefGoogle Scholar
  48. 48.
    R. C. Williams and F. D. Crary, Anal Chem., 48, 1150 (1976).CrossRefGoogle Scholar
  49. 49.
    T. Nishikawa and K. Someno, Anal Chem. 47, 1290 (1975).CrossRefGoogle Scholar
  50. 50.
    J. W. Hayes, D. E. Glover, D. E. Smith, and M. W. Overton, Anal Chem. 45, 277 (1973).CrossRefGoogle Scholar
  51. 51.
    C. A. Bush, Anal Chem. 46, 890 (1974).Google Scholar
  52. 52.
    G. Horlick and W. K. Yuen, Anal Chem. 48, 1643 (1976).CrossRefGoogle Scholar
  53. 53.
    T. A. Maldacker, J. E. Davis, and L. B. Rogers, Anal Chem. 46, 647 (1974).CrossRefGoogle Scholar
  54. 54.
    B. R. Kowalski and C. F. Bender, Anal. Chem. 45, 2234 (1973).CrossRefGoogle Scholar
  55. 55.
    J. B. Justice and T. L. Isenhour, Anal Chem. 46, 223 (1974).CrossRefGoogle Scholar
  56. 56.
    T. R. Brunner, R. C. Williams, C. L. Wilkins, and P. J. McCombie, Anal. Chem. 46, 1798 (1974) .Google Scholar
  57. 57.
    T. R. Brunner, C. L. Wilkins, R. C. Williams, and P. J. McCombie, Anal. Chem. 47, 662 (1975) .Google Scholar
  58. 58.
    J. Ekkers and W. H. Flygare, Rev. Sci. Instrum. 47, 448 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Peter R. Griffiths
    • 1
  1. 1.Department of ChemistryOhio UniversityAthensUSA

Personalised recommendations