Advertisement

A Comparative Neurochemical, Pharmacological, and Functional Analysis of Aversively Motivated Behaviors

Caveats and General Considerations
  • Hymie Anisman
  • Giorgio Bignami

Abstract

The various chapters of the present volume have been directed toward the analysis of (a) the organization of aversively motivated behaviors, (b) some critical biochemical and physiological substrates underlying the response of infrahuman subjects in aversive paradigms, and (c) profiles of treatment effects that may be pertinent for the characterization of drug mechanisms of action as well as the elucidation of the mechanisms sub-serving performance in aversive situations.

Keywords

Passive Avoidance Active Avoidance Avoidance Learning Avoidance Performance Aversive Situation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anisman, H., 1975a, Time-dependent variations in aversively motivated behaviors: Nonassociative effects of cholinergic and catecholaminergic activity, Psychol. Rev. 359–385.Google Scholar
  2. Anisman, H., 1975b, Differential effects of scopolamine and d-amphetamine on avoidance: Strain interactions, Pharmacol. Biochem. Behan. 3: 809–817.CrossRefGoogle Scholar
  3. Anisman, H., 1975e, Acquisition and reversal of an active avoidance response in three strains of mice. Behay. Biol. 14: 51–58.CrossRefGoogle Scholar
  4. Anisman, H., and Cygan, D., 1975, Central effects of scopolamine and d-amphetamine on locomotor activity: Interaction with strain and stress variables, Neuropharmacology 14: 835–840.CrossRefGoogle Scholar
  5. Anisman, H., and Waller, T. G., 1973, Effects of inescapable shock on subsequent avoidance performance: Role of response repertoire changes, Behay. Biol. 9: 331–355.CrossRefGoogle Scholar
  6. Anisman, H., Wahlsten, D., and Kokkinidis, L., 1975, Effects of (1-amphetamine on activity before and after shock in three mouse strains, Pharmacol. Biochem. Behay. 3: 819–824.CrossRefGoogle Scholar
  7. Anisman, H., Kokkinidis, L., Glazier, S., and Remington, G., 1976, Differentiation of response biases elicited by scopolamine and d-amphetamine: Effects on habituation, Behay. Biol. 18: 401–417.CrossRefGoogle Scholar
  8. Aprison, M. H., and Hingtgen, J. N., 1966, Neurochemical correlates of behavior. V. Differential effects of drugs on approach and avoidance behavior in rats with related changes in brain serotonin and norepinephrine, Rec. Adv. Biol. Psychiatry 8: 87–100.Google Scholar
  9. Aprison, M. H., and Hingtgen, J. N., 1969, Brain acetylcholine and excitation in avoidance behavior, Biol. Psychiatry 1: 87–89.Google Scholar
  10. Aprison, M. H., and Hingtgen, J. N., 1970, Evidence of a central cholinergic mechanism function during drug-induced excitation in avoidance behavior, in “Drugs and Cholinergic Mechanisms in the C.N.S.” (E. Heilbronn and A. Winter, eds.), pp. 543–560, Forsvarets Forskningsanstalt, Stockholm.Google Scholar
  11. Aprison, M. H., Hingtgen, J. N., and McBride, W. J., 1975, Serotonergic and cholinergic mechanisms during disruption of approach and avoidance behavior, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34: 1813–1822.Google Scholar
  12. Bartholini, G., Stadler, H., and Lloyd, K. G., 1973, Cholinergic—dopaminergic relation in different brain structures, in “Frontiers in Catecholamine Research” (E. Usdin and S. H. Snyder, eds.), pp. 741–745, Pergamon, New York.Google Scholar
  13. Bartholini, G., Stadler, H., and Lloyd, K. G., 1975, Cholinergic-dopaminergic interagulations within the extra-pyramidal system, in “Cholinergic Mechanisms” (P. G. Waser, ed.), pp. 411–418, Raven Press, New York.Google Scholar
  14. Bignami, G., 1976a, Nonassociative explanations of behavioral changes induced by central cholinergic drugs, Acta Neursbiiol. Exp. 36: 5–90.Google Scholar
  15. Bignami, G., 1976b, Behavioral pharmacology and toxicology, Annu. Rev. Pharmacol. Toxicol. 16: 329–366.CrossRefGoogle Scholar
  16. Bolles, R. C., 1970, Species-specific defense reactions and avoidance learning, Psychol. Rev. 77: 32–48.CrossRefGoogle Scholar
  17. Bolles, R. C., 1971, Species-specific defense reactions, in “Aversive Conditioning and Learning” (F. R. Brush, ed.), pp. 183–234, Academic, New York.Google Scholar
  18. Bolles, R. C., 1973, The avoidance learning problem, in “The Psychology of Learning and Motivation” (G. H. Bower, ed.), Academic, New York.Google Scholar
  19. Bolles, R. C., and Collier, A. C., 1976, The effect of predictive cues on freezing in rats. Anim. Learn. Behay. 4: 6–8.CrossRefGoogle Scholar
  20. Brody, J. F., 1970, Behavioral effects of serotonin depletion and p-chlorphenylalanine (a serotonin depletor) in rats, Psychopharmacologia 17: 14–33.CrossRefGoogle Scholar
  21. Carlton, P. L., 1963, Cholinergic mechanisms in the control of behavior by the brain, Psychol. Rev. 70: 19–39.CrossRefGoogle Scholar
  22. Carlton, P. L., 1969, Brain-acetylcholine and inhibition, in “Reinforcement and Behavior” (J. T. Tapp, ed.), pp. 286–327, Academic, New York.Google Scholar
  23. Carlton, P. L., and Advokat, C., 1973, Attenuated habituation due to parachlorophenylalanine, Pharmacol. Biochem. Behay. 1: 657–663.CrossRefGoogle Scholar
  24. Carlton, P. L., and Markiewicz, B., 1971, Behavioral effects of atropine and scopolamine, in “Pharmacological and Biophysical Agents and Behavior” (E. Furchtgott, ed.), pp. 345373, Academic, New York.Google Scholar
  25. Costal, B., and Naylor, R. J., 1972, Possible involvement of noradrenergic area of the amygdala with stereotyped behavior, Life Sci. 11: 1135–1146.CrossRefGoogle Scholar
  26. Consolo, S., Fanelli, R., Garattini, S., Ghezzi, D., Joni, A., Ladinsky, H., Marc, V., and Samanin, R., 1975, Dopaminergic—cholinergic interaction in the striatum: Studies with piribedil, in “Dopaminergic Mechanisms” (D. Caine, T. N. Chase, and A. Barbeau, eds.), pp. 257–272, Raven, New York.Google Scholar
  27. Cools, A. R., and Van Rossum, J. M., 1976, Excitation-mediating and inhibition—mediating dopamine-receptors: A new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data, Psychopharmacologia 45: 243–254.CrossRefGoogle Scholar
  28. Davis, M., and Sheard, M. H., 1974, Habituation and sensitization of the rat startle response: Effects of raphe lesions, Pksiol. Behay. 12: 425–433.CrossRefGoogle Scholar
  29. Davis, M., and Sheard, M. H., 1976, p-Chloroamphetamine (PCA): Acute and chronic effects in habituation and sensitization of the acoustic startle response in rats, Eur. J. Pharmacol. 35: 261–273.Google Scholar
  30. Dabrowska, J., 1975, Prefrontal lesions and avoidance reflex differentiation in dogs, Acta Neurobiol. Exp. 35: 1–15.Google Scholar
  31. Deutsch, J. A., 1971, The cholinergic synapse and the site of memory, Science, 174: 788–794.CrossRefGoogle Scholar
  32. Fibiger, H. C., and Campbell, B. A., 1971, The effect of para-chlorphenylalanine on spontaneous locomotor activity in the rat, Neuropharmacology 10: 25–32.CrossRefGoogle Scholar
  33. Frontali, M., An’iorico, L., De Acetis, L., and Bignami, G., 1976, A pharmacological analysis of processes underlying differential responding: A review and further experiments with scopolamine, amphetamine, LSD-25, chlordiazepoxide, physostigmine, and chlorpromazine, Behay. Biol. 18: 1–74.CrossRefGoogle Scholar
  34. George, G., and Mellanby, J., 1974, A further study on the effect of physostigmine on memory in rats, Brain Res. 81: 133–144.CrossRefGoogle Scholar
  35. Grewaal, D. S., Fibiger, H. C., and McGeer, E. G., 1974, 6-Hydroxydopamine and striatal acetylcholine levels, Brain Res. 73: 372–375.Google Scholar
  36. Héry, F., Raier, E., and Glowinski, J., 1973, Effect of 6-hydroxydopamine on daily variations of 5-HT synthesis in the hypothalamus of the rat, Brain Res. 58: 135–146.CrossRefGoogle Scholar
  37. Hingtgen, J. N., Smith, J. E., Shea, P. A., Aprison, M. H., and Gaff, T. M., 1976, Cholinergic changes during conditioned suppression in rats, Science 193:332–334.CrossRefGoogle Scholar
  38. Hornykiewicz, O., 1966, Dopamine (3-hydroxytyramine) and brain function, Pharmacol. Rev. 18: 925–964.Google Scholar
  39. Izquierdo, I., 1974, Possible peripheral adrenergic and cholinergic mechanisms in pseudo-conditioning, Psychopharmacologia 35: 189–194.CrossRefGoogle Scholar
  40. Izquierdo, I., and Cavalheiro, E. A., 1976, The three main factors of rat shuttle behavior: Their pharmacology and sequential entry in operation during a two-way avoidance session, Psychopharmacology 49: 145–157.CrossRefGoogle Scholar
  41. Jacobs, B. L., Wise, W. D., and Taylor, K. M., 1974, Differential behavioral and neurochemical effects following lesions of the dorsal or median raphe nuclei in rats, Brain Res. 79: 353–361.CrossRefGoogle Scholar
  42. Jacobs, B. L., Trimbach, C., Eubanks, E. E., and Trulson, M., 1975, Hippocampal mediation of raphe lesion-and PCPA-induced hyperactivity in the rat, Brain Res. 94: 253–261.CrossRefGoogle Scholar
  43. Jacobs, B. L., Mosko, S. S., and Trulson, E., 1976, The investigation of the role of serotonin in mammalian behavior, in “Neurobiology of Sleep and Memory” (R. R. Drucker-Colin and J. L. McGaugh, eds.), Academic, New York.Google Scholar
  44. Janowsky, D. S., El-Yousef, M. K., Davis, J. M., and Sekerke, H. J., 1972, Cholinergic antagonism of methylphenidate-induced stereotyped behavior, Psychopharmacologia 27: 295–303.CrossRefGoogle Scholar
  45. Javoy, F., Agid, Y., Bouvet, D., and Glowinski, J., 1974, Changes in neostriatal DA metabolism after carbachol or atropine microinjections into the substantia nigra, ’Brain Res. 68: 253–260.CrossRefGoogle Scholar
  46. Kim, J., 1973, Effects of 6-hydroxydopamine on acetylcholine and GABA metabolism in rat striatum, Brain Res. 55: 472–475.CrossRefGoogle Scholar
  47. Kokkinidis, L., and Anisman, H., 1976, Interaction between cholinergic and catecholaminergic agents in a spontaneous alternation task, Psychopharmacology 48: 261–270.CrossRefGoogle Scholar
  48. Konorski, J., 1967, “Integrative Activity of the Brain,” University of Chicago Press, Illinois. Konorski, J., 1972, Some hypotheses concerning the functional organization of prefrontal cortex, Acta Neurobiol. Exp. 32: 595–613.Google Scholar
  49. Ladinsky, H., Consolo, S., Bianchi, S., Samanin, R., and Ghezzi, D., 1975, Cholinergicdopaminergic interaction in the striatum: The effect of 6-hydroxydopamine or pimozide treatment on the increased striatal acetylcholine levels induced by apomorphine, piribedil, and d-amphetamine, Brain Res. 84 (2): 221–226.CrossRefGoogle Scholar
  50. Levis, D. J., 1976, Learned helplessness: A reply and an alternative S—R interpretation, J. Exp. Pevrhol. Gen. 105: 47–65.CrossRefGoogle Scholar
  51. Lloyd, K. G., Stadler, H., and Bartholini, G., 1973, Dopamine and acetylcholine neurones in striatal and limbic structures: Effect of neuroleptic drugs, in “Frontiers in Catecholamine Research” (E. Usdin and S. H. Snyder, eds.), pp. 777–780, Pergamon, New York.Google Scholar
  52. Lorens, S., 1973, Raphe lesions in cats: Forebrain serotonin and avoidance behavior, Pharmacol. Biochem. Behay. 1: 487–490.CrossRefGoogle Scholar
  53. Lorens, S. A., Sorensen, J. P., and Yunger, L. M., 1971, Behavioral and neurochemical effects of lesions in the raphe system of the rat, J. Comp. Physiol. Psychol. 77: 48–52.CrossRefGoogle Scholar
  54. Lorens, S. A., Guldberg, H. C., Hole, K., Köhler, C., and Srebro, B., 1976, Activity, avoidance learning and regional 5-hydroxytryptamine following intra-brainstem 5,7-dihydroxytryptamine and electrolytic midbrain raphe lesions in the rat, Brain Res. 108: 97–113.CrossRefGoogle Scholar
  55. Mabry, P. D., and Campbell, B. A., 1973, Serotonergic inhibition of catecholamine-induced behavioral arousal, Brain Res. 49: 381–391.CrossRefGoogle Scholar
  56. Maier, S. F., and Seligman, M.E.P., 1976, Learned helplessness: “Theory and evidence, J. Exp. Psychol.: Gen. 105: 3–46.CrossRefGoogle Scholar
  57. McBride, W. J., Hingtgen, J. N., and Aprison, M. H., 1976, Neurochemical correlates of behavior: Levels of amino acids in four areas of the brain of the rat during drug-induced behavioral excitation, Pharmacy’. Biochem. Behay. 4: 53–57.CrossRefGoogle Scholar
  58. McGaugh, J. L., 1966, Time-dependent processes in memory storage, Science 153: 1351–1358.CrossRefGoogle Scholar
  59. McGaugh, J. L., and Petrinovich, L. F., 1965, Effect of drugs on learning and memory, Int. Rev. Neurobiol. 8: 139–191.CrossRefGoogle Scholar
  60. McGeer, P. L., Grewaal, D. S., and McGeer, E. G., 1974, Influence of noncholinergic drugs on rat striatal acetylcholine levels, Brain Res. 80: 211–217.CrossRefGoogle Scholar
  61. McMillan, D. E., 1975, Determinants of drug effects on punished responding, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34: 1870–1879.Google Scholar
  62. Mennear, J. H., 1965, Interactions between central cholinergic agents and amphetamine in mice, Psychapharmacologia 7: 107–114.CrossRefGoogle Scholar
  63. Miczek, K. A., 1973a, Effects of scopolamine, amphetamine and benzodiazepines on conditioned suppression. Pharmacol. Biochem. Behay. 1: 401–411.CrossRefGoogle Scholar
  64. Miczek, K. A., 1973b, Effects of scopolamine, amphetamine and chlordiazepoxide on punishment, Psychopharmacologia 28: 373–389.CrossRefGoogle Scholar
  65. Post, R. M., and Goodwin, F. K., 1973, Simulated behavior states: An approach to specificity in psychobiological research, Biol. Psychiatry 7: 237–254.Google Scholar
  66. Price, M.T.C., Cooper, R. M., 1975, U-shaped functions in a shock—escape task, J. Comp. Physiol. Psychol. 89: 600–606.CrossRefGoogle Scholar
  67. Proctor, C. D., Potts, J. L., Ashley, L. G., and Denefield, B. A., 1967, Pilocarpine reversal of d-amphetamine induced increase in mouse exploratory locomotor activity, Arch. Int. Pharmacodyn. Ther. 167: 61–68.Google Scholar
  68. Rescorla, R. A., and Solomon, R. L., 1967, Two process learning theory: Relationships between Pavlovian and instrumental learning, Psychol. Rev. 74: 151–182.CrossRefGoogle Scholar
  69. Richardson, J. S., 1974, Basic concepts of psychopharmacological research as applied to the psychopharmacological analysis of the amygdala, Acta Neurobiol. Exp. 34: 543–562.Google Scholar
  70. Seligman, M.E.P., and Johnston, J. C., 1973, A cognitive theory of avoidance learning, in “Contemporary Approaches to Conditioning and Learning” (F. J. McGuigan and D. B. Lumsden, eds.), pp. 69–110, Winston, New York.Google Scholar
  71. Siegel, S., 1975, Evidence from rats that morphine tolerance is a learned response, J. Comp. Physiol. Psychol. 89: 498–506.CrossRefGoogle Scholar
  72. Siegel, S., 1976, Morphine analgesic tolerance: Its situation specificity supports a Pavlovian conditioning model, Science 193: 323–325.CrossRefGoogle Scholar
  73. Shettleworth, S. J., 1972, Constraints on learning, in “Advances in the Study of Behavior” (D. S. Lehrman, R. A. Hinde, and E. Shaw, eds.), Vol. 4, Academic, New York.Google Scholar
  74. Signorelli, A., 1976, Influence of physostigmine upon consolidation of memory in mice, J. Comp. Physiol. Psychol. 90: 658–664.CrossRefGoogle Scholar
  75. Srebro, B., and Lorens, S. A., 1975, Behavioral effects of selective midbrain raphe lesions in the rat, Brain Res. 89: 303–325.CrossRefGoogle Scholar
  76. Stadler, H., Lloyd, K. G., and Bartholini, G., 1974, Dopaminergic inhibition of striatal cholinergic neurons: Synergistic blocking action of y-butyrolactone on neuroleptic drugs, Arch Pharmacol. 283: 129–134.CrossRefGoogle Scholar
  77. Steranka, L. R., and Barrett, R. J., 1974, Facilitation of avoidance acquisition by lesion of the median raphe nucleus: Evidence for serotonin as a mediator of shock-induced suppression, Behay. Biol. 11: 205–215.CrossRefGoogle Scholar
  78. Stewart, W. J., 1975a, Environmental complexity does affect scopolamine-induced changes in activity, Neurosci. Lett. 1: 121–125.CrossRefGoogle Scholar
  79. Stewart, W. J., 1975b, Effect of prior experience of an environment on scopolamine-induced changes in activity, Neurosci. Lett. 1: 173–177.CrossRefGoogle Scholar
  80. Swonger, A. K., and Rech, R. H., 1972, Serotonergic and cholinergic involvement in habituation of activity and spontaneous alternation of rats in a Y-maze, J. Comp. Physiol. Psychol. 81: 509–522.CrossRefGoogle Scholar
  81. Testa, T. J., 1974, Causal relationships and the acquisition of avoidance responses, Psychol. Rev. 81: 491–505.CrossRefGoogle Scholar
  82. Wahlsten, D., 1972, Genetic experiments with animal learning: A critical review, Behay. Biol. 7: 143–182.CrossRefGoogle Scholar
  83. Weiss, J. M., Glazer, H. I., Pohorecky, L. A., Brick, J., and Miller, N. E., 1975, Effects of chronic exposure to stressors on avoidance—escape behavior and on brain norepinephrine, Psychosom. Med. 37: 522–534.Google Scholar
  84. Welch, B. L., and Welch, A. S., 1970, Control of brain catecholamines and serotonin during acute stress and after d-amphetamine by natural inhibition of monoamine oxidase: An hypothesis, in “Amphetamines and Related Compounds” (E. Costa and S. Garattini, eds.), pp. 415–446, Raven, New York.Google Scholar
  85. Williams, J M, Hamilton, L. W., and Carlton, P. L., 1974, Pharmacological and anatomical dissociation of two types of habituation, J. Comp. Physiol. Psychol. 87: 724–732.CrossRefGoogle Scholar
  86. Williams, J. M., Hamilton, L. W., and Carlton, P. L., 1975, Ontogenetic dissociation of two classes of habituation, J. Comp. Physiol. Psychol. 89: 733–737.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Hymie Anisman
    • 1
  • Giorgio Bignami
    • 2
  1. 1.Department of PsychologyCarleton UniversityOttawaCanada
  2. 2.Laboratorio di FarmacologiaIstituto Superiore di SanitàRomaItaly

Personalised recommendations