Cholinergic Mechanisms and Aversively Motivated Behaviors

  • Giorgio Bignami
  • Hanna Michałek


The pharmacological and toxicological properties of such agents as muscarine, pilocarpine, physostigmine, arecoline, atropine, scopolamine, and nicotine were known for a long time before the substances were identified and the properties of cholinergic mechanisms assessed by modern physiological and biochemical methods (Holmstedt, 1975). In particular, the bizarre mixture of “stimulant” and “depressant” effects caused by the consumption of antimuscarinic-containing plants, such as Atropa belladonna (the deadly nightshade) or Datura stramonium (Jameston or Jimson weed, stinkweed, thorn-apple, devil’s apple, yerba del diablo), have stimulated the imagination of people in widely different cultures. This is reflected in the lore of older pharmacological and toxicological treatises, as shown by the following description of the effects of the consumption of belladonna berries (the description applies to a group of soldiers who ate the poisonous material in order to refresh themselves at the end of a tiring day):

Some of them died on the spot, others were severely poisoned; most of them became cheerful and playful; they pushed and pinched each other; some looked idiotic. Visual hallucinations were observed: one of the soldiers, mistaking his own finger for his pipe, made efforts to light it with a burning piece of wood, without showing any symptom of pain; when somebody pushed back his arm, with a stupid look and a naive smile he rubbed the brand on his trousers made of white cloth, which took fire. A sergeant mistook a carriage for a cellar or a bread store, and pretended to distribute victuals to the troops; but he was alone. Other soldiers knelt down and tried hard to collect blades of grass and twigs which they put together in bundles. They said this was their fatigue duty, and started crying when they were obliged to leave it, since they feared punishment by the corporal.*


Passive Avoidance Conditioned Suppression Active Avoidance Septal Lesion Cholinergic Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeelen, J. H. F. v., 1974, Genotype and the cholinergic control of exploratory behaviour in mice, in “The Genetics of Behaviour” U. H. F. v. Abeelen, ed.), pp. 348–374, North-Holland, Amsterdam.Google Scholar
  2. Albanus, L., 1970, Studies on central and peripheral effects of anticholinergic drugs, FOA Rep. 4(4):-1–17.Google Scholar
  3. Anderson, D. C., and Packham, S., 1967, Preshock, scopolamine, and genetic strain as determinants of the effects of punishment, Psychon. Sci. 9: 49–50.Google Scholar
  4. Ando, K., 1975, Profile of drug effects on temporally spaced responding in rats, Phamacol. Biochem. Behay. 3: 833–841.Google Scholar
  5. Anisman, H., 1973, Cholinergic mechanisms and alterations in behavioral suppression as factors producing time-dependent changes in avoidance performance, J. Comp. Physiol. Psychot. 83: 465–477.Google Scholar
  6. Anisman, H., 1975a, Time-dependent variations in aversively motivated behaviors: Nonasso- ciative effects of cholinergic and catecholaminergic activity, Psychol. Rev. 82: 359–385.Google Scholar
  7. Anisman, H., 1975b, Dissociation of disinhibitory effects of scopolamine: Strain and task factors, Pharmacol. Biochem. Behay. 3: 613–618.Google Scholar
  8. Anisman, H., 1975c, Differential effects of scopolamine and d-amphetamine on avoidance: Strain interactions, Pharmacol. Biochem. Behay. 3: 809–817.Google Scholar
  9. Anisman, H., 1975d, Effects of scopolamine and d-amphetamine on one-way, shuttle and inhibitory avoidance: A diallel analysis in mice, Pharmacol. Biochem. Behay. 3: 1037–1042.Google Scholar
  10. Anisman, H., 1976a, Effects of scopolamine and d-amphetamine on locomotor activity before and after shock: A diallel analysis in mice, Psychopharmacology 48: 165–173.Google Scholar
  11. Anisman, H., 1976b, Role of stimulus locale on strain differences in active avoidance after scopolamine or d-amphetamine treatment, Pharmacol. Biochem. Behay. 4: 103–106.Google Scholar
  12. Anisman, H., and Cygan, D., 1975, Central effects of scopolamine and (+) -amphetamine on locomotor activity: Interaction with strain and stress variables, Neuropharmocology 14: 835–840.Google Scholar
  13. Anisman, H., and Kokkinidis, L., 1975, Effects of scopolamine, d-amphetamine and other drugs affecting catecholamines on spontaneous alternation and locomotor activity in mice, Psychopharmacologies 45: 55–63.Google Scholar
  14. Anisman, H., and Waller, T. G., 1971, Effects of methamphetamine and shock duration during inescapable shock exposure on subsequent active and passive avoidance, J. Comp. Physiol. Psychol. 77: 143–151.Google Scholar
  15. Anisman, H., and Waller, T. G., 1973, Effects of inescapable shock on subsequent avoidance performance: Role of response repertoire changes, Behay. Biol. 9: 331–355.Google Scholar
  16. Anisman, H., Wahlsten, D., and Kokkinidis, L., 1975, Effects of d-amphetamine and scopolamine on activity before and after shock in three mouse strains, Pharmacol. Biochem. Behay. 3: 819–824.Google Scholar
  17. Aquilonius, S.-M., Lundholm, B., and Winbladh, B., 1972, Effects of some anticholinergic drugs on cortical acetylcholine release and motor activity in rats, Eur. J. Pharmacol. 20: 224–230.Google Scholar
  18. Armstrong, P. D., Cannon, J. G., and Long, J. P., 1968, Conformationally rigid analogues of acetylcholine, Nature (London) 220: 65–66.Google Scholar
  19. Atweh, S. F., and Kuhar, M. J., 1976, Effects of anesthetics and septal lesions and stimulation on 3H-acetylcholine formation in rat hippocampus, Eur. J. Pharmacol. 37: 311–319.Google Scholar
  20. Baker, R. W., Chothia, C. H., Pauling, P., and Petcher, T. J., 1971, Structure and activity of muscarinic stimulants. Nature (London) 230: 439–445.Google Scholar
  21. Barlow, R. B., 1965, Chemical structure and biological activity of nicotine and related compounds, in “Tobacco Alkaloids and Related Compounds” (U.S. Von Euler, ed.), pp. 277–301, Pergamon, Oxford.Google Scholar
  22. Barrett, R. J., Leith, N. J., and Ray, O. S., 1972, Permanent facilitation of avoidance behavior by d-amphetamine and scopolamine, Psychopharmacologia 25: 321–331.Google Scholar
  23. Barrett, R. J., Leith, N. J., and Ray, O. S., 1973, A behavioral and pharmacological analysis of variables mediating active-avoidance behavior in rats, J. Comp. Physiol. Psychol. 82: 489–500.Google Scholar
  24. Barrett, R. J., Leith, N. J., and Ray, O. S., 1974, An analysis of the facilitation of avoidance acquisition produced by d-amphetamine and scopolamine, Behay. Biol. 11: 189–203.Google Scholar
  25. Bartolini, A., and Pepeu, G., 1967, Investigations into the acetylcholine output from the cerebral cortex of the cat in the presence of hyoscine, Br. J. Pharmacol. Chemother. 31: 66–73.Google Scholar
  26. Bartolini, A., Bartolini, R., and Pepeu, G. C., 1970, The effect of oxotremorine on the acetylcholine content of different parts of cat brain, J. Pharm. Pharmacol. 22: 59–60Google Scholar
  27. Bartus, R. T., and Johnson, H. R., 1976, Short-term memory in the rhesus monkey: Disruption from the anti-cholinergic scopolamine, Pharmacol. Biochem. Behay. 5: 39–46Google Scholar
  28. Bättig, K., 1970, The effect of pre-and post-trial application of nicotine on the 12 problems of the Hebb-Williams test in the rat, Psychopharmacologia 18: 68–76.Google Scholar
  29. Bättig, K., and Driscoll, P., 1975, Effects of the inhalation of cigarette smoke on swimming endurance and avoidance behavior in the rat, in “Behavioral Toxicology” (B. Weiss and V. G. Laties, eds.), pp. 293–307, Plenum, New York.Google Scholar
  30. Bättig, K., Driscoll, P., Schlauer, J., and lister, H. J., 1976, Effects of nicotine on the exploratory locomotion patterns of female Roman high-and low-avoidance rats, Pharmacol. Biochem. Behay. 4:435–439.Google Scholar
  31. Beani, L., Bianchi, C., and Megazzini, P., 1964, Regional changes of acetylcholine and choline acetylase activity in the guinea pig’s brain after scopolamine, Experientia 20: 677–678.Google Scholar
  32. Beani, L., Bianchi, C., Santinoceto, L., and Marchetti; P., 1968, The cerebral acetylcholine release in conscious rabbits with semi-permanently implanted epidural cups, Int. J. Neuropharmacol. 7:469–481.Google Scholar
  33. Beani, L., Bianchi, C., Megazzini, P., Ballotti, L., and Bernardi, G., 1969, Drug induced changes in free, labile and stable acetylcholine of guinea-pig brain, Biochem. Pharmacol. 18:1315–1324.Google Scholar
  34. Belluzzi, J. D., 1972, Long-lasting effects of cholinergic stimulation of the amygdaloid complex in the rat, J. Comp. Physiol. Psychol. 80:269–282.Google Scholar
  35. Belluzzi, J. D., and Grossman, S. P., 1969, Avoidance learning: Long-lasting deficits after temporal lobe seizure, Schnee 166:1635–1637.Google Scholar
  36. Bennett, T. L., 1971, Hippocs’npal theta activity and behavior. A review, Commun. Behan. Biol. 6: 37–48.Google Scholar
  37. Bennett, T. L., 1973, The effects of centrally blocking hippocampal theta activity on learning and retention, Behay. Biol. 9: 541–552.Google Scholar
  38. Berger, B. D., 1972, Conditioning of food aversions by injections of psychoactive drugs, J. Comp. Physiol. Psychol. 81: 21–26.Google Scholar
  39. Berger, B. D., and Stein, L., 1969a, An analysis of the learning deficits produced by scopolamine, Psychopharmacologia 14: 271–283.Google Scholar
  40. Berger, B. D., and Stein, L., 19696, Asymmetrical dissociation of learning between scopolamine and Wy 4036, a new benzodiazepine tranquilizer, Psychopharmacologia 14: 351–358.Google Scholar
  41. Berry, C. A., and Stark, L. G., 1965, Modification of conditional behavior by prior experience. Effects of scopolamine, Psychopharmacologia 7: 409–415.Google Scholar
  42. Bertels-Meeuws, M. M., and Polak, R. L., 1968, Influence of antimuscarinic substances on in vivo synthesis of acetylcholine by rat cerebral cortex, Br. J. Pharmacol. Chemother. 33:368–380.Google Scholar
  43. Berti, F., Clementi, F., Conti-Tronconi, B. and Folco, G. C., 1976, A cholinoceptor antiserum: Its pharmacological properties, Br. J. Pharmacol. 57: 17–22.Google Scholar
  44. Biederman, G. B., 1974, The search for the chemistry of memory. Recent trends and the logic of investigation in the role of cholinergic and adrenergic transmitters, Prog. Neurobiol. 2:289–308.Google Scholar
  45. Bignami, G., 1964, Effects of benactyzine and adiphenine on instrumental avoidance conditioning in a shuttle-box, Psychopharmacologia 5: 264–279.Google Scholar
  46. Bignami, G., 1966, Pharmacologic influences on mating behavior in the male rat. Effects of d-amphetamine, LSD-25, strychnine, nicotine and various anticholinergic agents, Psychopharmacologia 10:44–58.Google Scholar
  47. Bignami, G., 1967, Anticholinergic agents as tools in the investigation of behavioral phenomena, Neuro-Psycho-Pharmacol. Proc. Int. Congr. Coll. Int. Neuro-Psychopharmacol. 5th 966: 819–830.Google Scholar
  48. Bignami, G., 1976a, Nonassociative explanations of behavioral changes induced by central cholinergic drugs, Acta Neurobiol. Exp 36: 5–90.Google Scholar
  49. Bignami, G., 1976b, Behavioral pharmacology and toxicology, Annu. Rev. Pharmacol. Toxicol. 16: 329–366.Google Scholar
  50. Bignami, G., and Gatti, G. L., 1967, Neurotoxicity of anticholinesterase agents. Antagonistic action of various centrally acting drugs, Proc. Eur. Soc. Study Drug Toxic. 8th 1966:93–106.Google Scholar
  51. Bignami, G., and Gatti, G. L., 1969, Repeated administration of central anticholinergics. Classical tolerance phenomena versus behavioural adjustments to compensate for drug-induced deficits, Proc. Eur. Soc. Study Drug Toxic. 10th 1968: 40–46.Google Scholar
  52. Bignami, G., and Rosié, N., 1971, The nature of disinhibitory phenomena caused by central cholinergic (muscarinic) blockade, Adv. Neuropsychopharmacol. Proc. Symp. Congr. Coll. Int. Neuro-Psychopharmacol. 7th 1970: 481–495.Google Scholar
  53. Bignami, G., and Rosié, N., 1972, Acquisition and performance effects of scopolamine and of treatment withdrawal in avoidance situations, Physiol. Behay. 8: 1127–1134.Google Scholar
  54. Bignami, G., Robustelli, F., Jankft, I., and Bovet, D., 1965, Action de l’amphétamine et de quelques agents psychotropes sur l’acquisition d’un conditionnement de fuite et d’évitement chez des rats sélectionnés en fonction du niveau particulièrement bas de leurs performances, C.R. Acad. Sci. 260: 4273–4278.Google Scholar
  55. Bignami, G., Carro-Ciampi, G., and Albert, M., 1968, Effects of frontal lesions on “go—no go” avoidance behaviour in normal and scopolamine-treated rats, Physiol. Behay. 3: 487–493.Google Scholar
  56. Bignami, G., Amorico, L., Frontali, M., and Rosié, N., 1971, Central cholinergic blockade and two-way avoidance acquisition: The role of response disinhibition, Physiol. Behay. 7: 46–1470.Google Scholar
  57. Bignami, G., Rosié, N., Michalek, H., Milosevié, M., and Gatti, G. L., 1975, Behavioral toxicity of anticholinesterase agents: Methodological, neurochemical, and neuropsychological aspects, in “Behavioral Toxicology” (B. Weiss and V. G. Laties, eds.), pp. 155–210, Plenum, New York.Google Scholar
  58. Bird, S. J., and Aghajanian, G. K., 1975, Denervation supersensitivity in the cholinergic septo—hippocampal pathway: A microiontophoretic study, Brain Res. 100: 355–370Google Scholar
  59. Bird, S. J., and Aghajanian, G. K., 1976, The cholinergic pharmacology of hippocampal pyramidal cells: A microiontophoretic study, Neuropharmacology 15: 273–282.Google Scholar
  60. Birdsall, N. J. M., and Hulme, E. C., 1976, Biochemical studies on muscarinic acetylcholine receptors, J. Neurochem. 27: 7–16.Google Scholar
  61. Blanchard, R. J., Fukunaga, K., and Blanchard, D. C., 1972, Alterations of defensive reactions in the rat after cholinergic stimulation of midline thalamic nuclei, Physiol. Behay. 8: 817–822.Google Scholar
  62. Blatt, R. C., 1976, Facilitation and nonfacilitation of active avoidance behavior of rats with septal lesions in the shuttle box and running wheel, J. Comp. Physiol. Psychol. 90: 704–713Google Scholar
  63. Bohmer-Daly, H., 1968, Disruptive effects of scopolamine on fear conditioning and on instrumental escape learning, J. Comp. Physiol. Psychol. 66: 579–583.Google Scholar
  64. Boren, J. J., 1961, Some effects of adiphenine, benactyzine, and chlorpromazine upon several operant behaviors, Psychopharmacologia 2: 416–424.Google Scholar
  65. Bosmann, H. B., 1972, Acetylcholine receptor. I. Identification and biochemical characteris- tics of a cholinergic receptor of guinea pig cerebral cortex, J. Biol. Chem. 247: 130–145.Google Scholar
  66. Bourdois, P. S., Mitchell, J. F., and Szerb, J. C., 1971, Effect of atropine on acetylcholine release from cerebral cortical slices stimulated at different frequencies, Br. J. Pharmacol. 42: 640P - 641 P.Google Scholar
  67. Bourdois, P. S., Mitchell, J. F., Somogyi, G. T., and Szerb, J. C., 1974, The output per stimulus of acetylcholine from cerebral cortical slices in the presence or absence of cholinesterase inhibition, Br. J. Pharmacol. 52: 509–517.Google Scholar
  68. Bovet, D., 1965, Action of nicotine on conditioned behaviour in naive and pretrained rats, in “Tobacco Alkaloids and Related Compounds” (U.S. Von Euler, ed.), pp. 125–136, Pergamon, Oxford.Google Scholar
  69. Bovet, D., Robustelli, F., and Bignami, G., 1965, Etude du conditionnement inhibiteur chez le rat. Action de l’amphétamine, de la chlorpromazine et des agents cholinergiques, C.R. Acad. Sci. 260: 4641–4645.Google Scholar
  70. Bovet, D., Bovet-Nitti, F., and Oliverio, A., 1966, Effects of nicotine on avoidance conditioning of inbred strains of mice, Psychopharmacologua 10: 1–5.Google Scholar
  71. Bovet, D., Bovet-Nitti, F., and Oliverio, A., 1967, Action of nicotine on spontaneous and acquired behavior in rats and mice, Ann. N.Y. Acad. Sci. 142: 261–267.Google Scholar
  72. Bovet-Nitti, F., 1966, Facilitation of simultaneous visual discrimination by nicotine in the rat, Psychopharmacologia 10: 59–66.Google Scholar
  73. Bovet-Nitti, F., 1969, Facilitation of simultaneous visual discrimination by nicotine in four “inbred” strains of mice, Psychopharmacologia 14: 193–199.Google Scholar
  74. Bovet-Nitti, F., and Bovet, D., 1966, Différente action de la nicotine au cours de la journée et de la nuit dans l’activité spontanée (running activity) du rat, C.R. Acad. Sci 262 (D): 316–320.Google Scholar
  75. Bradley, P. B., 1964, The electrophysiological approach, in “Animal Behaviour and Drug Action” (H. Steinberg and A. F. S. de Reuck, eds.), pp. 338–344, Churchill, LondonGoogle Scholar
  76. Bradley, P. B., and Brimblecombe, R. W. (eds.), 1977, Biochemical and Pharmacological Mechanisms Underlying Behaviour, Prog. Brain Res. 36: 1–203.Google Scholar
  77. Bradley, P. B., and Dray, A., 1973, Modification of the responses of brain stem neurones to transmitter substances by anaesthetic agents, Br. J. Pharmacol. 48: 212–224.Google Scholar
  78. Bradley, P. B., and Fink, M. (eds.), 1968, “Anticholinergic Drugs and Brain Functions in Animals and Man,” Prog. Brain Res. 28:1–184.Google Scholar
  79. Brezenoff, H. E., and Mycek, M.J., 1976, Prevention and reversal of tolerance to barbiturates by intraventricular injection of hemicholinium-3, Eur. J. Pharmacol. 37: 125–132Google Scholar
  80. Brimblecombe, R. W., 1974, “Drug Actions on Cholinergic Systems,” Macmillan, LondonGoogle Scholar
  81. Brimblecombe, R. W., and Buxton, D. A., 1972, Behavioural actions of anticholinergic drugs, Prog. Brain Res. 36: 115–126.Google Scholar
  82. Broadhurst, P. L., 1977, Pharmacogenetics, in “Handbook of Psychopharmacology. Section Two. Behavioral Pharmacology in Animals, Vol. 7, Principles of Behavioral Psychopharmacology” (L. L. Iversen, S. Iversen, and S. H. Snyder, eds.), pp. 265–320, Plenum, New York.Google Scholar
  83. Brown, C. P., 1976, Two types of habituation in chicks: Differential dependence on cholinergic activity, Pharmacol. Biochem. Behay. 4: 235–238.Google Scholar
  84. Burgen, A. S. V., and Hiley, C. R., 1975, The use of an alkylating antagonist in investigating the properties of muscarinic receptors, in “Cholinergic Mechanisms” (P. G. Waser, ed.), pp. 381–385, Raven, New York.Google Scholar
  85. Burgen, A. S. V., Hiley, C. R., and Young, J. M., 1974, The properties of muscarinic receptors in mammalian cerebral cortex, Br. J. Pharmacol. 51: 279–285.Google Scholar
  86. Buxton, D. A., Brimblecombe, R. W., French, M. C., and Redfern, P. H., 1976, Brain acetylcholine concentration and acetylcholinesterase activity in selectively-bred strains of rats, Psychopharmacology 47: 97–99.Google Scholar
  87. Calhoun, W. H., Smith, A. A., and Bauer, R., 1970, Scopolamine’s effects on passive avoidance, Psychon. Sci. 21: 165–166.Google Scholar
  88. Campbell, L. B., Hanin, I., and Jenden, D. J., 1970, Gas chromatographic evaluation of the effects of some muscarinic and antimuscarinic drugs on acetylcholine levels in rat brain, Biochem. Pharmacol. 19: 2053–2059.Google Scholar
  89. Carlton, P. L., 1963, Cholinergic mechanisms in the control of behavior by the brain, Psychol. Rev. 70: 19–39.Google Scholar
  90. Carlton, P. L., 1966, Scopolamine, amphetamine and light-reinforced responding, Psychon. Sci. 5: 347–348.Google Scholar
  91. Carlton, P. L., 1968a, Brain acetylcholine and habituation, Prog. Brain Res. 28: 48–60.Google Scholar
  92. Carlton, P. L., 19686, Cholinergic mechanisms in the control of behavior, in “Psychopharmacology. A Review of Progress 1957–1967” (D. H. Efron, J. O. Cole, J. Levine, and J. R. Wittenborn, eds.), pp. 125–135, Superintendent of Documents, US Government Printing Office, P.H.S. Publication No. 1836, Washington, D. C.Google Scholar
  93. Carlton, P. L., 1969, Brain-acetylcholine and inhibition, in “Reinforcement and Behavior” (J. T. Tapp, ed.), pp. 286–327, Academic, New York.Google Scholar
  94. Carlton, P. L., and Advokat, C., 1973, Attenuated habituation due to parachlorophenylalanine, Pharmacol. Biochem. Behay. 1: 657–663.Google Scholar
  95. Carlton, P. L., and Markiewicz, B., 1971, Behavioral effects of atropine and scopolamine, in “Pharmacological and Biophysical Agents and Behavior” (E. Furchtgott, ed.), pp. 345–373, Academic, New York.Google Scholar
  96. Carro-Ciampi, G., and Bignami, G., 1968, Effects of scopolamine on shuttle-box avoidance and go—no go discrimination: Response—stimulus relationships, pretreatment baselines, and repeated exposure to drug. Psychopharmacologia 13: 89–105.Google Scholar
  97. Castellano, C., 1971, Effects of some anticholinergic drugs on water maze learned behaviour in mice, Psychopharmacologia 21: 361–369.Google Scholar
  98. Castellano, C., 1976, Effects of nicotine on discrimination learning, consolidation and learned behaviour in two inbred strains of mice, Psychopharmacology 48: 37–43Google Scholar
  99. Castellano, C., Sansone, M., Renzi, P., Annecker, L., 1973, Central stimulant drugs on avoidance behaviour in hamsters, Pharmacol. Res. Commun. 5: 287–293.Google Scholar
  100. Chakrin, L. W., Marchbanks, R. M., Mitchell, J. F., and Whittaker, V. P., 1972, The origin of the acetylcholine released from the surface of the cortex, J. Neurochem. 19: 2727–2736.Google Scholar
  101. Changeux, J. P., 1975, The cholinergic receptor protein from fish electric organ, in “Handbook of Psychopharmacology. Section I. Basic Neuropharmacology, Vol. 6, Biogenic Amine Receptors” (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), pp. 235–301, Plenum, New York.Google Scholar
  102. Cheney, D. L., Costa, E., Hanin, I., Trabucchi, M., and Wang, C. T., 1975a, Application of principles of steady-state kinetics to the in vivo estimation of acetylcholine turnover rate in mouse brain, J. Pharmacol. Exp. Ther. 192: 288–296.Google Scholar
  103. Cheney, D. L., Costa, E., Hanin, I., Racagni, G., and Trabucchi, M., 1975b, Acetylcholine turnover rate in brain of mice and rats: Effects of various dose regimens of morphine, in “Cholinergic Mechanisms” (P. G. Waser, ed.), pp. 217–228, Raven, New York.Google Scholar
  104. Chiappetta, L., and Jarvik, M. E., 1969, Comparison of learning impairment and activity depression produced by two classes of anticholinergic agents, Arch. Int. Pharmacodyn. Ther. 179: 161–166.Google Scholar
  105. Chippendale, T. J., Cotman, C. W., Kozar, M. D., and Lynch, G. S., 1974, Analysis of acetylcholinesterase synthesis and transport in the rat hippocampus: Recovery of acetyl-cholinesterase activity in the septum and hippocampus after administration of diisopropylfluorophosphate, Brain Res. 81: 485–496.Google Scholar
  106. Cho, A. K., Haslett, W. L., and Jenden, D. J., 1962, The peripheral actions of oxotremorine, a metabolite of tremorine, J. Pharmacol. Exp. Ther. 138: 249–257.Google Scholar
  107. Chugunova, S. N., and Kopylova, N., 1966, On the significance of central cholinergic mechanisms in inducing complex motor conditioned reflexes (experiments with Aprolidin) (in Russian), Zh. Vyssh. Nero. Deyat. Im. I. P. Pavlova, 16: 921–923Google Scholar
  108. Cohen, J. B., and Changeux, J. P., 1975, The cholinergic receptor protein in its membrane environment, Annu. Rev. Pharmacol. 15: 83–103.Google Scholar
  109. Consolo, S., Ladinsky, H., Peri, G., and Garattini, S., 1972, Effect of central stimulants and depressants on mouse brain acetylcholine and choline levels, Eur. J. Pharmacol. 18: 251–255.Google Scholar
  110. Consolo, S., Garattini, S., and Ladinsky, H., 1975, Action of the benzodiazepines on the cholinergic system, Adv. Biochem. Psychopharmacol. 14: 63–80.Google Scholar
  111. Costa, E., and Greengard, P. (eds.). 1975, “Mechanism of Action of Benzodiazepines”, Adv. Biochem. Psychopharmacol. 14:1–181.Google Scholar
  112. Costa, E., Guidotti, A., Mao, C. C., and Suria, A., 1975, New concepts on the mechanism of action of benzodiazepines, Life Sci. 17: 167–185.Google Scholar
  113. Cox, B., and Potkonjak, D., 1969a, The relationship between tremor and change in brain acetylcholine concentration produced by injection of tremorine or oxotremorine in the rat, Br. J. Pharmacol. 35: 295–303.Google Scholar
  114. Cox, B., and Potkonjak, D., 1969b, An investigation of the tremorgenic effects of oxotremorine and tremorine after stereotaxic injection into rat brain, Int. J. Neuropharmacol. 8: 291–297.Google Scholar
  115. Crossland, J., and Slater, P., 1968, The effect of some drugs on the “free” and “bound” acetylcholine content of rat brain, Br. J. Pharnacol. Chemother. 33:42–47.Google Scholar
  116. Dhrowska, J., 1972, On the mechanism of go—no go symmetrically reinforced task in dogs, Acta Neurobiol. Exp. 32: 345–359.Google Scholar
  117. Dabrowska, J., 1975, Prefrontal lesions and avoidance reflex differentiation in dogs, Acta Neurobiol. Exp. 35: 1–15.Google Scholar
  118. Dale, H. H., 1914, The action of certain esters and ethers of choline, and their relation to muscarine, J. Pharmacol. Exp. Ther. 6: 147–190.Google Scholar
  119. Davis, T. R. A., Kensler, C. J., and Dews, P. B., 1973, Comparison of behavioral effects of nicotine, d-amphetamine, caffeine and dimethvlheptyl tetrahydrocannabinol in squirrel monkeys, Psychopharmacologia 32: 51–65.Google Scholar
  120. Deadwyler, S. A., Montgomery, D., and Wyers, E. J., 1972, Passive avoidance and carbachol excitation of the caudate nucleus, Physiol. Behay. 8: 631–635.Google Scholar
  121. Del fenu, G., Mantegazzini, P., and Pepeu, G., 1966, Scopolamine induced changes of brain acetylcholine and EEG pattern in cats with complete pontine transection, Arch. Ital. Biol. 104: 141–151.Google Scholar
  122. DeFeudis, F. V., 1974, “Central Cholinergic Systems and Behavior,” Academic, New York. Dennis, S. G., 1974, Temporal aspects of scopolamine-induced one-way memory dissociation in mice, J. Comp. Physiol. Psychol. 86: 1052–1058.Google Scholar
  123. De Robertis, E., 1971, Molecular biology of synaptic receptors, Science 171: 963–971.Google Scholar
  124. De Robertis, E., and Schacht, J. (eds.), 1974, “Neurochemistry of Cholinergic Receptors,” Raven, New York.Google Scholar
  125. De Robertis, E., Fiszer, S., Pasquini, J. M., and Soto, E. F., 1969, Isolation and chemical nature of the receptor for d-tubocurarine in nerve-ending membranes of the cerebral cortex, J. Neurobiol. 1: 41–52.Google Scholar
  126. De Robertis, E., Fiszer de Plazas, S., and de Carlin, M. C. L., 1976, Similarities between “cholinergic proteolipid” and detergent-extracted cholinergic proteins, Nature (London), 259: 605.Google Scholar
  127. Deutsch, J. A., 1971, The cholinergic synapse and the site of memory, Science 174: 788–794Google Scholar
  128. Dilts, S. L., and Berry, C. A., 1967, Effect of cholinergic drugs on passive avoidance in the mouse, J. Pharmacol. Exp. Thee 158: 279–285.Google Scholar
  129. Domino, E. F., 1965a, Some behavioral actions of nicotine, in “Tobacco Alkaloids and Related Compounds” (U.S. Von Euler, ed.), pp. 145–162, Pergamon, Oxford.Google Scholar
  130. Domino, E. F., 1965b, Some comparative pharmacological actions of (H-nicotine, its optical isomer, and related compounds, in “Tobacco Alkaloids and Related Compounds” (U. S. Von Euler, ed.), pp. 303–313, Pergamon, Oxford.Google Scholar
  131. Domino, E. F., 1967, Electroencephalographic and behavioral arousal effects of small doses of nicotine: A neuropsychopharmacological study, Ann. N.Y. Acad. Sci. 142: 216–244.Google Scholar
  132. Domino, E. F., 1973, Neuropsychopharmacology of nicotine and tobacco smoking, in “Smoking Behavior: Motives and Incentives” (W. L. Dunn, Jr., ed.), pp. 5–31, Winston, Washington, D.C.Google Scholar
  133. Domino, E. F., 1975, Role of central cholinergic mechanisms in the specific actions of narcotic agonists, in “Cholinergic Mechanisms” (P. G. Waser, ed.), pp. 433–453, Raven, New York.Google Scholar
  134. Domino, E. F., and Olds, M. E., 1972, Effects of d-amphetamine, scopolamine, chlordiazepoxide and diphenylhydantoin on self-stimulation behavior and brain acetylcholine, Psychopharmacologia 23: 1–16.Google Scholar
  135. Domino, E. F., Dren, A. T., and Yamamoto, K. I., 1967, Pharmacologic evidence for cholinergic mechanisms in neocortical and limbic activating systems, Prog. Brain Res. 27: 337–364.Google Scholar
  136. Domino, E. F., Vasko, M. R., and Wilson, A. E., 1976, Mixed depressant and stimulant actions of morphine and their relationship to brain acetylcholine, Life Sci. 18: 361–376.Google Scholar
  137. Driscoll, P., 1976, Nicotine-like behavioral effect after small dose of mecamylamine in Roman high-avoidance rats, Psychopharmacologia 46:119–121.Google Scholar
  138. Driscoll, P., and Bättig, K., 1970, The effect of nicotine and total alkaloids extracted from cigarette smoke on avoidance behavior in rats under extinction procedure, Psychopharmacologia 18: 305–313.Google Scholar
  139. Driscoll, P., and Bättig, K., 1973a, Cigarette smoke and behavior: Some recent developments, Rev. Environ. Health, 1: 113–133.Google Scholar
  140. Driscoll, P., and Bättig, K., 1973b, The effect of small doses of mecamylamine on shuttlebox behavior in the guinea-pig, Experientia 28: 991–993.Google Scholar
  141. Driscoll, P., and Bättig, K., 1974, Effects of nicotine on the shuttle-box behavior of trained guinea pigs, Psychopharmacologia 38: 47–54.Google Scholar
  142. Dudar, J. D., 1975, The effect of septal nuclei stimulation on the release of acetylcholine from the rabbit hippocampus, Brain Res. 83: 123–133.Google Scholar
  143. Dudar, J. D., and Szerb, J. C., 1969, The effect of topically applied atropine on resting and evoked cortical acetylcholine release,,. Physiol. (London) 203: 741–762.Google Scholar
  144. Dunn, W. L., Jr. (ed.), 1973, “Smoking Behavior: Motives and Incentives,” Winston, Washington, D.C.Google Scholar
  145. Enna, S. J., Yamamura, H. I., and Snyder, S. H., 1976, Development of muscarinic choliner-gic and GABA receptor binding in chick embryo brain, Brain Res. 101: 177–183Google Scholar
  146. Erickson, C. K., 1971, Studies on the mechanism of avoidance facilitation by nicotine, Psychopharmacologia 22: 357–368.Google Scholar
  147. Escaleras, R., and Bignami, G., 1967, Azione facilitante della scopolamina sull’acquisizione di un condizionamento continuo di salvaguardia nel ratto: effetti reversibili ed effetti permanenti, Ann. 1st. Super. Sanità 3: 515–527.Google Scholar
  148. Evangelista, A. M., and Izquierdo, I., 1972, Effects of atropine on avoidance conditioning: Interaction with nicotine and comparison with N-methyl-atropine, Psychopharmacologia 27: 241–248.Google Scholar
  149. Evangelista, A. M., Gattoni, R. C., and Izquierdo, I., 1970, Effect of amphetamine, nicotine and hexamethonium on performance of a conditioned response during acquisition and retention trials, Pharmacology 3: 91–96.Google Scholar
  150. Evans, H. L., and Patton, R. A., 1968, Scopolamine effects on a one-trial test of fear conditioning, Psychon. Sci. 11:229–230.Google Scholar
  151. Evans, H. L., and Patton, R. A., 1970, Scopolamine effects on conditioned suppression: Influence of diurnal cycle and transitions between normal and drugged states, Psychopharmacologia 17: 1–13.Google Scholar
  152. Farrow, J. T., and O’Brien, R. D., 1973, Binding of atropine and muscarone to rat brain fractions and its relation to the acetylcholine receptor, Mol. Pharmacol. 9: 33–40Google Scholar
  153. Feigley, D. A., and Hamilton, L. W., 1971, Response to novel environment following septal lesions or cholinergic blockade in rats, J. Comp. Physiol. Psychol. 76: 496–504.Google Scholar
  154. Feigley, D. A., Beakey, W., and Saynisch, M. J., 1976, Effect of scopolamine on the reactivity of the albino rat to footshock, Pharmacol. Biochem. Behay. 4: 255–258.Google Scholar
  155. File, S. E., 1976, Are central cholinergic paths involved in habituation of exploration and distraction? Pharmacol. Biochem. Behay. 4: 695–702.Google Scholar
  156. Findley, J. D., and Robinson, W. W., 1969, An aversively maintained counting procedure for assessment of drugs and drug-behavior interactions in primates: Effects of chlorpromazine, scopolamine and d-amphetamine, Commun. Behay. Biol. 3: 305–313.Google Scholar
  157. Fink, Z., 1968, Effect of anticholinergic drugs on the levels of acetylcholine in different parts of the rat brain, Act. Nerv. Super. 10: 320–321.Google Scholar
  158. Fleming, J. C., and Broadhurst, P. L., 1975, The effects of nicotine on two-way avoidance conditioning in bi-directionally selected strains of rats, Psychopharmacologia 42: 147–152.Google Scholar
  159. Florio, V., Bignami, G., and Longo, V. G., 1969, EEG patterns during the behavioural desensitization to scopolamine in rats, Int. J. Neuropharmacol. 8: 405–411.Google Scholar
  160. Fried, P. A., 1972, Septum and behavior: A review, Psychol. Bull. 78: 292–310.Google Scholar
  161. Frontali, M., Amorico, L., De Acetis, L., and Bignami, G., 1976, A pharmacological analysis of processes underlying differential responding: A review and further experiments with scopolamine, amphetamine, lysergic acid diethylamide (LSD-25), chlordiazepoxide, physostigmine, and chlorpromazine, Behay. Biol. 18: 1–74.Google Scholar
  162. Fulginiti, S., and Orsingher, O. A., 1973, Further evidence in support of a common adrenergic mechanism for the facilitatory action on learning of amphetamine and nicotine in rats, J. Pharm. Pharmacol. 25: 580–581.Google Scholar
  163. Gaglio, G., 1914, “Trattato di Farmacologia e Terapia,” Società Editrice Libraria, MilanoGoogle Scholar
  164. Gatti, G. L., 1957, Azione dei farmaci tranquillanti sui vari tipi di comportamento del ratto condizionato, in “Psychotropic Drugs” (S. Garattini and V. Ghetti, eds.), pp. 125–135, Elsevier, Amsterdam.Google Scholar
  165. Geller, I., Hartmann, R., and Blum, K., 1971, Effects of nicotine, nicotine monornethiodide, lobeline, chlordiazepoxide, meprobamate and caffeine on a discrimination task in laboratory rats, Psychopharmacologia 20: 355–365.Google Scholar
  166. George, G., and Mellanby, J., 1974, A further study on the effect of physostigmine on memory in rats, Brain Res. 81: 133–144.Google Scholar
  167. Giarman, N. J., and Pepeu, G., 1962, Drug-induced changes in brain acetylcholine, Br. J. Pharmacol. Chemother. 19: 226–234.Google Scholar
  168. Giarman, N. J., and Pepeu, G., 1964, The influence of centrally acting cholinolytic drugs on brain acetylcholine levels, Br. J. Pharmacol. Chemother. 23: 123–130.Google Scholar
  169. Glick, S. D., and Greenstein, S., 1972, Differential effects of scopolamine and mecamylamine on passive avoidance behavior, Life Sci. 11 (I): 169–179.Google Scholar
  170. Glick, S. D., Greenstein, S., and Goldfarb, J., 1973a, Increased electrical impedance of mice following administration of scopolamine, Behay. Biol. 9: 771–775.Google Scholar
  171. Glick, S. D., Mittag, T. W., and Green, J.P., 1973b, Central cholinergic correlates of impaired learning, Neuropharmacology 12: 291–296.Google Scholar
  172. Goddard, G. V., 1969, Analysis of avoidance conditioning following cholinergic stimulation of amygdala in rats, J. Camp. Physiol. Psychol. Mon. 68 (No. 2 Part 2): 1–18.Google Scholar
  173. Goldberg, A. M., and Hanin, I. (eds.), 1976, “Biology of Cholinergic Function,” Raven, New York.Google Scholar
  174. Goldberg, M. E., Sledge, K., Hefner, M., and Robichaud, R. C., 1971, Learning impairment after three classes of agents which modify cholinergic function, Arch. Int. Pharmacodyn. Ther. 193: 226–235.Google Scholar
  175. Goodman, L. S., and Gilman, A. (eels.), 1975, “The Pharmacological Basis of Therapeutics,” 5th ed., Macmillan, New York.Google Scholar
  176. Graeff, F. G., 1974, Tryptamine antagonists and punished behavior, J. Pharmacol. Exp. Ther. 189: 344–350.Google Scholar
  177. Green, S. E., Joyce, D., and Summerfield, A., 1975, Effects of scopolamine on habituation of exploratory activity in rats, Physiol. Psychol. 3: 400–404.Google Scholar
  178. Grossman, S. P., 1964, Effect of chemical stimulation of the septal area on motivation, J. Comp. Physiol. Psychol. 58: 194–200.Google Scholar
  179. Grossman, S. P., 1966a, The VMH: a center for affective reactions, satiety, or both?, Physiol. Behay. 1: 1–10.Google Scholar
  180. Grossman, S. P., 1966b, Acquisition and performance of avoidance responses during chemi- cal stimulation of the midbrain reticular formation, J. Comp. Physiol. Psychol. 61: 42–49.Google Scholar
  181. Grossman, S. P., 1968, Behavioral and electroencephalographic effects of micro-injections of neurohumors into the midbrain reticular formation, Physiol. Behay. 3:777–786.Google Scholar
  182. Grossman, S. P., and Peters, R. H., 1966, Acquisition of appetitive and avoidance habits following atropine-induced blocking of the thalamic reticular formation, J. Comp. Physiol. Psychol. 61: 325–332.Google Scholar
  183. Grossman, S. P., Peters, R. H., Freedman, P. E., and Willer, H. I., 1965, Behavioral effects of cholinergic stimulation of the thalamic reticular formation, J. Comp. Physiol. Psychol. 59: 57–65.Google Scholar
  184. Gruber, R. P., Stone, G. C., and Reed, D. R., 1967, Scopolamine-induced anterograde amnesia, Int. J. Neuropharmacol. 6: 187–190.Google Scholar
  185. Hamburg, M. D., and Fulton, D. R., 1972, Influence of recall on an anticholinesterase induced retrograde amnesia, Physiol. Behay. 9: 409–418.Google Scholar
  186. Hamilton, L. W., and Grossman, S. P., 1969, Behavioral changes following disruption of central cholinergic pathways, J. Comp.. Physiol. Psychol. 69: 76–82.Google Scholar
  187. Hamilton, L. W., McCleary, R. A., and Grossman, S. P., 1968, Behavioral effects of cholinergic septal blockade in the cat, J. Comp. Physiol. Psychol. 66: 563–568.Google Scholar
  188. Hanson, H. M., Witoslawski, J. J., and Campbell, E. H., 1967, Drug effects in squirrel monkeys trained on a multiple schedule with a punishment contingency, J. Exp. Anal. Behay. 10: 565–569.Google Scholar
  189. Haubrich, D. R., and Reid, W. D., 1972, Effects of pilocarpine or arecoline administration on acetylcholine levels and serotonin turnover in rat brain, J. Pharmacol. Exp. Ther. 181: 1927.Google Scholar
  190. Haubrich, D. R., Wang, P. F. L., Herman, R. L., and Clody, D. E., 1975, Acetylcholine synthesis in rat brain: Dissimilar effects of clozapine and chlorpromazine, Life Sci. 17: 739–748.Google Scholar
  191. Haycock, J. W., Deadwyler, S. A., Sideroff, S. I., and McGaugh, J.L., 1973, Retrograde amnesia and cholinergic systems in the caudate—putamen complex and dorsal hippo-campus of the rat, Exp. Neurol. 41:201–213.Google Scholar
  192. Hearst, E., 1964, Drug effects on stimulus generalization gradients in the monkey, Psychopharmacologia 6: 57–70.Google Scholar
  193. Hecht, K., 1963, Über den dosisbedingten triphasischen Effekt des Benactyzins auf den bedingten Fluchtreflex der Albinoratte, Acta Biol. Med. Ger. 11: 502–518.Google Scholar
  194. Hecht, K., 1967, The importance of different conditioned-reflex experimental situations (light—dark; silence—noise; escape—feeding) for the effect of different centrally acting drugs (psychopharmaca), Neuro-Psycho-Pharmacol. Proc. Int. Congr. Coll. Int. Neuro-PsychoPharmacol. 5th 1966: 848–856.Google Scholar
  195. Hecht, K., Treptow, K., Poppei, M., and Hecht, T., 1968, Zur Abhängigkeit pharmakolo- gischer Effekte von der Umgebungshelligkeit, Acta Biol. Med. Ger. 20: 757–772.Google Scholar
  196. Hecht, K., Treptow, K., and Hecht, T., 1969, Zur Abhängigkeit pharmakologischer Effekte vom Geräuschpegel, Acta Biol. Med. Ger. 23:121–132.Google Scholar
  197. Heilbronn, E., 1975, Biochemistry of cholinergic receptors, in “Cholinergic Mechanisms” (P. G. Waser, ed.), pp. 343–364, Raven, New York.Google Scholar
  198. Heilbronn, E., and Winter, A. (eds.), 1970, “Drugs and Cholinergic Mechanisms in the CNS,” Research Institute of National Defence, Stockholm.Google Scholar
  199. Heise, G. A., 1975, Discrete trial analysis of drug action, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34: 1898–1903.Google Scholar
  200. Heise, G. A., and Boff, E., 1971, Stimulant action of d-amphetamine in relation to test compartment dimensions and behavioral measure, Neuropharmacology 10: 259–266Google Scholar
  201. Heise, G. A., Hrabrich, B., Lilie, N. L., and Martin, R. A., 1975, Scopolamine effects on delayed spatial alternation in the rat, Pharmacol. Biochem. Behay. 3: 993–1002.Google Scholar
  202. Heise, G. A., Conner, R., and Martin, R. A., 1976, Effects of scopolamine on variable intertrial interval spatial alternation and memory in the rat, Psychopharmacology 49: 131–137.Google Scholar
  203. Herink, J., Bajgar, J., and Patoéka, J., 1975, Changes of acetylcholinesterase activity in some parts of the limbic system following septal lesions in rats, J. Neurochem. 24: 187–188Google Scholar
  204. Herrnstein, R. J., 1958, Effects of scopolamine on a multiple schedule, J. Exp. Anal. Behay. 1: 351–358.Google Scholar
  205. Herz, A., 1960, Drugs and the conditioned avoidance response, Int. Rev. Neurobiol. 2: 229–277.Google Scholar
  206. Herz, A., 1960/1961, Die Bedeutung der Bahnung für die Wirkung von Scopolamin und ähnlichen Substanzen auf bedingten Reaktionen, Z. Biol. Munich 112: 104–112.Google Scholar
  207. Herz, A., 1962, Wirkungen des Arecolins auf das Zentralnervensystem, Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 242: 414–429.Google Scholar
  208. Herz, A., 1968, Some actions of cholinergic and anticholinergic drugs on reactive behaviour, Prog. Brain Res. 28: 73–85.Google Scholar
  209. Herz, A., and Yacoub, F., 1964, Hemmung nociceptiver und bedingter Reaktionen durch Cholinomimetica im Vergleich mit der Wirkung anderer zentral angreifender Substanzen, Psychopharmacologia 5: 115–125.Google Scholar
  210. Herz, A., Holzhäuser, H., and Teschemacher, H., 1966, Zentrale und periphere Wirkungen von Cholinomimetica und ihre Abhängigkeit von der Lipoidlöslichkeit, Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 253: 280–297.Google Scholar
  211. Hiley, C. R., and Burgen, A. S. V., 1974, The distribution of muscarinic receptor sites in the nervous system of the dog, J. Neurochem. 22: 159–162.Google Scholar
  212. Hingtgen, J. N., Smith, J. E., Shea, P. A., Aprison, M. H., and Gaff, T. M., 1976, Cholinergic changes during conditioned suppression in rats, Science 193: 332–334.Google Scholar
  213. Holloway, F. A., 1972, Effects of septal chemical injections on asymptotic avoidance performance in cats, Physiol. Behay. 8: 463–469.Google Scholar
  214. Holmstedt, B., 1970, Les effets centraux des substances cholinomimétiques et cholinolytiques, Actual. Pharmacol. 22: 175–198.Google Scholar
  215. Holmstedt, B., 1975, Pages from the history of research on cholinergic mechanisms, in “Cholinergic Mechanisms” (P. G. Waser, ed.), pp. 1–21, Raven, New York.Google Scholar
  216. Holmstedt, B., and Lundgren, G., 1966, Tremorgenic agents and brain acetylcholine, in “Mechanisms of Release of Biogenic Amines,” (U. S. Von Euler, S. Rosell, and B. Uvnäs, eds.) pp. 439–468, Pergamon, Oxford.Google Scholar
  217. Holmstedt, B., and Lundgren, G., 1970, Effects of oxotremorine and atropine on choline acetylase activity, in “Drugs and Cholinergic Mechanisms in the CNS” (E. Heilbronn and A. Winter, eds.), pp. 339–354, Research Institute of National Defence, Stockholm.Google Scholar
  218. Holmstedt, B., Lundgren, G., and Sundwall, A., 1963, Tremorine and atropine effects on brain acetylcholine, Life Sci. 2: 731–736.Google Scholar
  219. Holmstedt, B., Lundgren, G., Schuberth, J., and Sundwall, A., 1965, Tremorine and oxotremorine effects on acetylcholinesterase and choline acetylase from rat brain, Biochem. Pharmacol. 14: 189–191.Google Scholar
  220. Horn, A. S., 1975, Structure—activity relations for neurotransmitter receptor agonists and antagonists, in “Handbook of Psychopharmacology. Section One. Basic Neuropharmacology, Vol. 2, Principles of Receptor Research” (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), pp. 179–243, Plenum, New York.Google Scholar
  221. Houser, V. P., 1976, Modulation of the aversive qualities of shock through a central inhibitory cholinergic system in the rat, Pharmacol. Biochem. Behay. 4: 561–568.Google Scholar
  222. Houser, V. P., and Houser, F. L., 1973a, The alteration of aversive thresholds with choliner-gic and adrenergic agents, Pharmacol. Biochem. Behay. 1:433–444.Google Scholar
  223. Houser, V. P., and Houser, F. L., 1973b, The effects of agents that modify muscarinic tone upon behavior controlled by an avoidance schedule that employs signaled unavoidable shock, Psychopharmacologie 32: 133–150.Google Scholar
  224. Houser, V. P., and Paré, W. P., 1974, Anticholinergics: Their effects on fear-motivated behavior, urinary 11-hydroxycorticosteroids, urinary volume, and heart rate in the dog, Psychol. Rep. 34: 183–197.Google Scholar
  225. Houser, V. P., and Van Hart, D. A., 1973, The effects of scopolamine and pilocarpine upon the aversive threshold of the rat, Pharmacol. Biochem. Behay. 1: 427–431.Google Scholar
  226. Houser, V. P., and Van Hart, D. A., 1974, Modulation of cholinergic activity and the aversive threshold in the rat, Pharmacol. Biochem. Behay. 2: 631–637.Google Scholar
  227. Hrdina, P. D., 1974, Metabolism of brain acetylcholine and its modification by drugs, Drug Metabol. Rev. 3: 89–129.Google Scholar
  228. Hughes, R. N., Blampied, N. M., and Stewart, W. J., 1975, Scopolamine induced changes in activity and reactions to novelty, Pharmacol. Biochem. Behay. 3: 731–734.Google Scholar
  229. Hunt, W. A., and Dalton, T. K., 1976, Regional brain acetylcholine levels in rats acutely treated with ethanol or rendered ethanol-dependent, Brain Res. 109: 628–631.Google Scholar
  230. Hunt, W. A., and Majchrowicz, E., 1974, Alterations in the turnover of brain norepinephrine and dopamine in alcohol-dependent rats. J. Neurochem. 23: 549–552.Google Scholar
  231. Igic, R., 1971, Effect of oxotremorine on the acetylcholine content of whole brain and various brain regions in the pigeon, Br. J. Pharmacol. 42: 303–304.Google Scholar
  232. Igie, R., and Stern, P., 1971, The effect of oxotremorine on the “free” and “bound” brain acetylcholine concentrations and motor activity in beri—beri pigeons, Can. J. Physiol. Pharmacol. 49: 985–987.Google Scholar
  233. Ilyutchenok, R. Yu., 1968, Cholinergic brain mechanisms and behaviour, Prog. Brain Res. 28: 134–148.Google Scholar
  234. Inch, T. D., and Brimblecombe, R. W., 1974, Antiacetylcholine drugs: Chemistry, stereo-chemistry, and pharmacology, Int. Rev. Neurobiol. 16: 67–144.Google Scholar
  235. International Narcotic Research Club on the Opiate Narcotics, 1975, “Neurochemical Mechanisms in Analgesia and Dependence”, Life Sci. 17: 1–96.Google Scholar
  236. Ireson, J. D., 1970, A comparison of the antinociceptive actions of cholinomimetic and morphine-like drugs, Br. J. Pharmacol. 40: 92–101.Google Scholar
  237. Isaacson, R. L., 1974, “The Limbic System,” Plenum, New York.Google Scholar
  238. Iversen, L. L., Iversen, S. D., and Snyder, S. H., (eds.), 1975, “Handbook of Psychopharmacology. Section One. Basic Neuropharmacology,” Plenum, New York.Google Scholar
  239. Iversen, L. L., Iversen, S. D., and Snyder, S. H. (eds.), 1977, “Handbook of Psychopharma- cology. Section Two. Behavioral Pharmacology in Animals,” Plenum, New York.Google Scholar
  240. Izquierdo, I., and Cavalheiro, E. A., 1976, Three main factors in rat shuttle behavior: Their pharmacology and sequential entry in operation during a two-way avoidance session, Psychopharmacology 49: 145–157.Google Scholar
  241. Jacob, J., and Barthelemy, C., 1966, Actions de la morphine et de l’arécoline sur l’élaboration centrale des réponses antinociceptives chez la souris. Etude d’antagonistes, J. Physiol. (Paris) 58: 537–538.Google Scholar
  242. Jacobsen, E., 1964, Benactyzine, in “Psychopharmacological Agents” (M. Gordon, ed.), Vol. 1, pp. 287–300, Academic, New York.Google Scholar
  243. Jacobsen, E., and Skaarup, Y., 1955, Experimental induction of conflict-behaviour in cats: The effect of some anticholinergic compounds, Acta Pharmacol. Toxicol. 11: 125–134.Google Scholar
  244. Jacobsen, E., and Sonne, E., 1955, The effect of benzilic acid diethylaminoethylester, HC1 (Benactyzine) on stress-induced behaviour in the rat, Acta Pharmacol. Toxicol. 11: 135–147.Google Scholar
  245. Jacobsen, E., and Sonne, E., 1956, The effect of Benactyzine on the conditioned responses in the rat, Acta Pharmacol. Toxicol. 12:310–320.Google Scholar
  246. Kalant, H., LeBlanc, A. E., and Gibbins, R. J., 1971, Tolerance to and dependence on, some non-opiate psychotropic drugs, Pharmacol. Rev. 23:135–191.Google Scholar
  247. Karczmar, A. G. (ed.), 1969, “Central Cholinergic Transmission and Its Behavioral Aspects”, Fed. Proc. Fed. Am. Soc. Exp. Biol. 28:89–159.Google Scholar
  248. Karczmar, A. G. (ed.), 1970, Anticholinesterase agents, in “International Encyclopedia of Pharmacology and Therapeutics” Sec. 13, Vol. 1, Pergamon, Oxford.Google Scholar
  249. Karczmar, A. G., 1975, Cholinergic influences on behavior, in “Cholinergic Mechanisms” (P. G. Waser, ed.), pp. 501–529, Raven, New York.Google Scholar
  250. Kato, A. C., Collier, B., Ilson, D. and Wright, J. M., 1975, The effect of atropine uponacetylcholine release from cat superior cervical ganglia and rat cortical slices: Measure-ment by a radio-enzymic method, Can. J. Physiol. Pharmacol. 53: 1050–1057Google Scholar
  251. Kawamura, H., and Domino, E. F., 1969, Differential actions of m and n cholinergic agonists on the brainstem activating system, Int. J. Neuropharmacology 8: 105–115.Google Scholar
  252. Kelsey, J. E., and Grossman, S. P., 1969, Cholinergic blockade and lesions in the ventro-medial septum of the rat, Physiol. Behay. 4: 837–845.Google Scholar
  253. Kelsey, J. E., and Grossman, S. P., 1975, Influence of central cholinergic pathways on performance of free-operant avoidance and DRL schedules, Pharmacol. Biochem. Behay. 3:1043–1050.Google Scholar
  254. Koelle, G. B. (ed.), 1963, Cholinesterases and anticholinesterase agents in “Handbuch der experimentellen Pharmakologie,” Vol. 15, Springer, Berlin.Google Scholar
  255. Köhler, C., 1976, Habituation of the orienting response after medial and lateral septal lesions in the albino rat, Behay. Biol. 16: 63–72.Google Scholar
  256. Kokkinidis, L., and Anisman, H., 1976a, Interaction between cholinergic and catecholami-nergic agents in a spontaneous alternation task, Psychopharmacology 48: 261–270Google Scholar
  257. Kokkinidis, L., and Anisman, H., 1976b, Dissociation of the effects of scopolamine and d-amphetamine on a spontaneous alternation task, Pharmacol. Biochem. Behay. 5: 293–297Google Scholar
  258. Konorski, J., 1972, Some hypotheses concerning the functional organization of prefrontal cortex, Acta Neurobiol. Exp. 32: 595–613.Google Scholar
  259. Kramis, R., Vanderwolf, C. H., and Bland, B. H., 1975, Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital, Exp. Neurol. 49: 58–85.Google Scholar
  260. Krnjevie, K., 1975, Acetylcholine receptors in vertebrate CNS, in “Handbook of Psychopharmacology. Section One. Basic Neuropharmacology. Vol. 6, Biogenic Amine Receptors” (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), pp. 97–126, Plenum, New York.Google Scholar
  261. Kuhar, M. J., and Yamamura, H. I., 1975, Light autoradiographic localisation of cholinergic muscarinic receptors in rat brain by specific binding of a potent antagonist, Nature (London) 253: 560–561.Google Scholar
  262. Kuhar, M. J., Sethy, V. H., Roth, R. H., and Aghajanian, G. K., 1973, Choline: Selective accumulation by central cholinergic neurons, J. Neurochem. 20: 581–593.Google Scholar
  263. Ladinsky, H., Consolo, S., Peri, G. and Garattini, S., 1973, Increase in mouse and rat brain acetylcholine levels by diazepam, in “The Benzodiazepines” (S. Garattini, E. Mussini, and L. O. Randall, eds.), pp. 241–242, Raven, New York.Google Scholar
  264. Lapin, I. P., 1974, Behavioural effects of psychoactive drugs influencing the metabolism of brain monoamines in mice of different strains, in “The Genetics of Behaviour” (J. H. F. v. Abeleen, ed.), pp. 417–432, North-Holland, Amsterdam.Google Scholar
  265. Larson, P. S., Haag, H. G., and Silvette, H., 1961, “Tobacco: Experimental and Clinical Studies,” Williams and Wilkins, Baltimore.Google Scholar
  266. Leaf, R. C., and Muller, S. A., 1966, Effects of scopolamine on operant avoidance acquisition and retention, Psychopharmacologia 9: 101–109.Google Scholar
  267. Leaf, R. C., and Muller, S. A., 1967, Central cholinergic response inhibition during massed free-operant and discrete-trial avoidance acquisition, Neuro-Psycho-Pharmacol. Proc. Int. Congr. Coll. Int. Neuro-Psycho-Pharmacol. 5th 1966: 1043–1050.Google Scholar
  268. Leaton, R. N., 1968, Effects of scopolamine on exploratory motivated behavior, J. Comp. Physiol. Psychol. 66: 524–527.Google Scholar
  269. Leaton, R. N., 1969, Effects of scopolamine and methscopolamine on brightness discrimina-tion reinforced by opportunity for exploration, J. Comp. Physiol. P.sychol. 68: 155–158Google Scholar
  270. Leaton, R. N., and Buck, R. L., 1968, Effect of scopolamine on response by the rat to environmental change, Psychon. Sci. 12: 101.Google Scholar
  271. Leaton, R. N., and Utell, M. J., 1970, Effects of scopolamine on spontaneous alternation following free and forced trials. Physiol. Beha:’. 5:331–334.Google Scholar
  272. Leith, N. J., and Barrett, R. J., 1975, Effects of hippocampal microinjections of d-amphetamine and scopolamine on active avoidance behavior in rats, J. Comp. Physiol. Psychol. 88: 285–299.Google Scholar
  273. Lewis, P. R., and Shute, C. C. D., 1967, The cholinergic limbic system. Projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest, Brain 90: 521–540.Google Scholar
  274. Lewis, P. R., Shute, C. C. D., and Silver, A., 1967, Confirmation from choline acetylase analyses of a massive cholinergic innervation to the rat hippocampus, J. Physiol. (London) 191: 215–224.Google Scholar
  275. Linuchev, M. N., and Michelson, M. J., 1965, The action of nicotine on the rate of elaboration of food motor conditioned reflexes in rats of different ages, Act. Nerv. Super. 7: 25–30.Google Scholar
  276. Longo, V. G., 1966, Behavioral and electroencephalographic effects of atropine and related compounds, Pharmacol. Rev. 18: 965–996.Google Scholar
  277. Longo, V. G., and Loizzo, A., 1973, Effects of drugs on the hippocampal theta-rhythm, Pharmacology Future Man Proc. Int. Congr. Pharmacol. 5th 1972 4: 46–54.Google Scholar
  278. Lowe, B., 1971, The effects of atropine on habituation in a light reinforcement situation, Psychopharmacologia 22:172–180.Google Scholar
  279. Lundgren, G., and Malmberg, M., 1968, Effects of oxotremorine on brain acetylcholine formation in vivo and in vitro, Biochem. Pharmacol. 17: 2051–2056.Google Scholar
  280. Lundholm, B. and Sparf, B., 1975, The effect of atropine on the turnover of acetylcholine in the mouse brain, Fur. J. Pharmacol 32:287–292.Google Scholar
  281. Maclntosh, F. C., 1963, Synthesis and storage of acetylcholine in nervous tissue, Can. J. Biochem. Physiol. 41: 2555–2571.Google Scholar
  282. Marchbanks, R. M., 1969, The conversion of “C-choline to `4C-acetylcholine in synaptosomes in vitro, Biochem. Pharmacol. 18: 1763–1766.Google Scholar
  283. Marchbanks, R. M., 1975, Biochemistry of cholinergic neurons, in “Handbook of Psycho-pharmacology. Section One. Basic Neuropharmacology, Vol. 3, Biochemistry of Bio-genic Amines” (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), pp. 247–326, Plenum, New York.Google Scholar
  284. Margules, D. L., 1968, Noradrenergic basis of inhibition between reward and punishment in amygdala, J. Comp. Physiol. Psycho!. 66: 329–334.Google Scholar
  285. Margules, D. L., 1971, Localization of anti-punishment actions of norepinephrine and atropine in amygdala and entopeduncular nucleus of rats, Brain Res. 35: 177–184.Google Scholar
  286. Margules, D. L., and Margules, A., 1973, The development of operant responses by noradrenergic activation and cholinergic suppression of movements, in “Efferent Organization and the Integration of Behavior” U. Maser, ed.), pp. 203–228, Academic, New York.Google Scholar
  287. Margules, D. L., and Stein, L., 1967, Neuroleptics vs. tranquilizers: Evidence from animal behavior studies of mode and site of action, Neuro-Psycho-Pharmacol. Proc. Int. Congr. Coll. Int. Neuro-Psycho-Pharmacol. 5th 1966: 108–120.Google Scholar
  288. Margules, D. L., and Stein L., 1969a, Cholinergie synapses of a periventricular punishment system in the medial hypothalamus, Am. J. Physiol. 217: 475–480.Google Scholar
  289. Margules, D. L., and Stein, L., 1969b, Cholinergie synapses in the ventromedial hypothalamus for the suppression of operant behavior by punishment and satiety, J. Comp. Physiol. Psycho!. 67: 327–335.Google Scholar
  290. Matthies, H., Rauca, C., and Liebmann, H., 1974, Changes in the acetylcholine content of different brain regions of the rat during a learning experiment, J. Neurochem. 23: 1109–1113.Google Scholar
  291. Mattsson, C., and Heilbronn, E., 1975, The nicotinic acetylcholine receptor; a glycoprotein, J. Neurochem. 25:899–901.Google Scholar
  292. McGeer, E. G., Wada, J. A., Terao, A., and Jung, E., 1969, Amine synthesis in various brain regions with caudate or septal lesions, Exp. Neural. 24: 277–284.Google Scholar
  293. Mehta, V. L., 1975, Cholinergic mechanisms in narcotic analgesics, Neuropharmacology, 14: 893–901.Google Scholar
  294. Mellgren, S. I., and Srebro, B., 1973, Changes in acetylcholinesterase and distribution of degenerating fibres in the hippocampal region after septal lesions in the rat, Brain Res. 52: 19–36.Google Scholar
  295. Metys, J., Wagner, N., Metysovâ, N., and Herz, A., 1969, Studies on the central antinociceptive action of cholinomimetic agents, Int. J. Neuropharmacol. 8: 413–425.Google Scholar
  296. Meyer, F. P., and Oelszner, W., 1971, Charakterisierung cholinerger Pharmaka im Hinblick auf ihre Rezeptoreigenschaften, Acta Biol. Med. Ger. 26: 799–809.Google Scholar
  297. Meyers, B., 1965, Some effects of scopolamine on a passive avoidance response in rats, Psychopharmacologia 8: 111–119.Google Scholar
  298. Meyers, B., and Koenig, A. H., 1967, Effects of scopolamine on a “go—no go” avoidance task in rats, Psychon. Sci. 9:143–144.Google Scholar
  299. Meyers, B., and Lazarus, M. A., 1967, Diminished responsivity on a passive avoidance task to second administration of scopolamine, Psychol. Rep. 20: 175–178.Google Scholar
  300. Meyers, B., and Wilchin, R. C., 1969, Some effects of scopolamine on locomotor activity in rats, Psychose. Sci. 17: 174–175.Google Scholar
  301. Meyers, B., Roberts, K. H., Riciputi, R. H., and Domino, E. F., 1964, Some effects of muscarinic cholinergie blocking drugs on behavior and the electrocorticogram, Psychopharmacologia 5:289–300.Google Scholar
  302. Michelson, M. J., 1961, Pharmacological evidences of the role of acetylcholine in the higher nervous activity of man and animals. Act. Nerv. Super. 3: 140–147.Google Scholar
  303. Miczek, K. A., 1973a, Effects of scopolamine, amphetamine and benzodiazepines on conditioned suppression, Pharmacol. Biochem. Behan. 1: 401–411.Google Scholar
  304. Miczek, K. A., 1973b, Effects of scopolamine, amphetamine and chlordiazepoxide on punishment, Psychopharmacologia 28: 373–389.Google Scholar
  305. Miczek, K. A., and Barry, H., III, 1976, Pharmacology of sex and aggression, in “Behavioral Pharmacology” (S. D. Glick and J. Goldfarb, eds.), pp. 176–257, Mosby, St. Louis.Google Scholar
  306. Miczek, K. A., and Grossman, S. P., 1972, Punished and unpunished operant behavior after atropine administration to the VMH of squirrel monkeys, J. Camp. Physiol. Psychol. 81: 318–330.Google Scholar
  307. Miczek, K. A., and Lau, P., 1975, Effects of scopolamine, physostigmine and chlordiazepoxide on punished and extinguished water consumption in rats, Psychopharmacologia 42: 263–269.Google Scholar
  308. Mitchell, J. F., 1963, The spontaneous and evoked release of acetylcholine from the cerebral cortex, J. Physiol. (London) 165: 98–116.Google Scholar
  309. Modak, A. T., Weintraub, S. T., McCoy, T. H., and Stavinoha, W. B., 1976, Use of 300-msec microwave irradiation for enzyme inactivation: A study of effects of sodium pentobarbital on acetylcholine concentration in mouse brain regions, J. Pharmacol. Exp. Titer. 197: 245–252.Google Scholar
  310. Molenaar, P. C., and Polak, R. L., 1970, Stimulation by atropine of acetylcholine release and synthesis in cortical slices from rat brain, Br. J. Pharmacol. 40: 406–417.Google Scholar
  311. Molenaar, P. C., and Polak, R. L., 1976, Analysis of the preferential release of newly synthesized acetylcholine by cortical slices from rat brain with the aid of two different precursors, J. Neurochem. 26: 95–99.Google Scholar
  312. Mollenauer, S., Plotnick, R., and Southwick, P., 1976, Scopolamine: Effects on fear or defense responses in the rat, Pharmacol. Biochem. Behay. 5: 157–163.Google Scholar
  313. Morrison, C. F., 1967, Effects of nicotine on operant behaviour of rats, Int. J. Neuropharmacol. 6: 229–240.Google Scholar
  314. Morrison, C. F., 1968, A comparison of the effects of nicotine and amphetamine on DRL performance in the rat, Psychopharmacologia 12: 176–180.Google Scholar
  315. Morrison, C. F., 1969, The effects of nicotine on punished behaviour, Psychopharmacologia 14: 221–232.Google Scholar
  316. Morrison, C. F., 1974a, Effects of nicotine and its withdrawal on the performance of rats on signalled and unsignalled avoidance schedules, Psychopharmacologia 38: 25–35Google Scholar
  317. Morrison, C. F., 1974b, Effects of nicotine on the observed behaviour of rats during signalled and unsignalled avoidance experiments, Psychopharmacologia 38: 37–46.Google Scholar
  318. Morrison, C. F., and Stephenson, J. A., 1973, Effects of stimulants on observed behaviour of rats on six operant schedules, Neuropharmacology 12: 297–310.Google Scholar
  319. Morrison, C. F., Goodyear, J. M., and Sellers, C. M., 1969, Antagonism by antimuscarinic and ganglion-blocking drugs of some of the behavioural effects of nicotine, Psychopharmacologia 15: 341–350.Google Scholar
  320. Moss, D. E., and Deutsch, J. A., 1975, Review of cholinergic mechanisms and memory, in “Cholinergic Mechanisms” (P. G. Waser, ed.), pp. 483–492, Raven, New York.Google Scholar
  321. Mulas, A., and Pepeu, G., 1970, Disappearance in rats with septal lesions of the stimulatory effect of hyoscine on exploratory behaviour, Br. J. Pharmacol. 39: 209P - 210 P.Google Scholar
  322. Mulas, A., Mulas, M. L., and Pepeu, G., 1974, Effect of limbic system lesions on acetylcholine release from the cerebral cortex of the rat, Psychopharmacologia 39: 223–230Google Scholar
  323. Murphree, H. B. (ed.), 1967, “The Effects of Nicotine and Smoking on the Central Nervous System”, Ann. N.Y. Acad. Sci. 142:1–333.Google Scholar
  324. Myers, R. D., and Drucker-Colin, R. R. (eds.), 1974, “Neurochemical Coding of Brain Function”, Adv. Behay. Biol. 10:1–480.Google Scholar
  325. Naess, K., and Rasmussen, E. W., 1958, Approach—withdrawal responses and other specific behaviour reactions as screening test for tranquilizers, Acta Pharmacol. Toxicol. 15: 99–114.Google Scholar
  326. Neill, D. B., and Grossman, S. P., 1970, Behavioral effects of lesions or cholinergic blockade of the dorsal and ventral caudate of rats, J. Comp. Physiol. Psychol. 71: 311–317.Google Scholar
  327. Nelsen, J. M., and Goldstein, L., 1972, Improvement of performance on an attention task with chronic nicotine treatment in rats, Psychopharmacologia 26: 347–360.Google Scholar
  328. Nistri, A., Bartolini, A., Deffenu, G., and Pepeu, G., 1972, Investigations into the release of acetylcholine from the cerebral cortex of the cat: Effects of amphetamine, of scopolamine and of septal lesions, Neuropharmacology 11: 665–674.Google Scholar
  329. Nordberg, A., and Sundwall, A., 1975, Effect of pentobarbital on endogenous acetylcholine and biotransformation of radioactive choline in different brain regions, in “Cholinergic Mechanisms” (P. G. Waser, ed.), pp. 229–239, Raven, New York.Google Scholar
  330. Nordberg, A., and Sundwall, A., 1976, Effect of oxotremorine on endogenous acetylcholine and on uptake and biotransformation of radioactive choline in discrete regions of mouse brain in vivo, Biochem. Pharmacol. 25: 135–140.Google Scholar
  331. O’Brien, R. D., Eldefrawi, M. E., and Eldefrawi, A. T., 1972, Isolation of acetylcholine receptors, Annu. Rev. Pharmacol. 12: 19–34.Google Scholar
  332. Oderfeld-Nowak, B., Narkiewicz, O., Bialows, J., Dbrowska, J., Wieraszko, A., and Grdkowska, M., 1974, The influence of septal nudei lesions on activity of acetylcholinesterase and choline acetyltransferase in the hippocampus of the rat, Acta Neurobiol. Exp. 34: 583–601.Google Scholar
  333. Oderfeld-Nowak, B., Narkiewicz, O., Wieraszko, A., and Grdkowska, M., 1976, Acetylcholinesterase and choline acetyltransferase activity in the amygdala of rat brain after septal lesions, Brain Res. 106: 396–402.Google Scholar
  334. Oliverio, A., 1966, Effects of mecamylamine on avoidance conditioning and maze learning of mice, J. Pharmacol. Exp. Ther. 154: 350–356.Google Scholar
  335. Oliverio, A., 1967, Contrasting effects of scopolamine on mice trained simultaneously with two different schedules of avoidance conditioning, Psychopharmacologia 11: 39–51Google Scholar
  336. Oliverio, A., 1968a, Effects of scopolamine on avoidance conditioning and habituation of mice, Psychopharmacologia 12: 214–226.Google Scholar
  337. Oliverio, A., 1968b, Some additional data on the effects of scopolamine on habituation and conditioning, Psychopharmacologia 13: 356–358.Google Scholar
  338. Oliverio, A., 1968c, Neurohumoral systems and learning, in “Psychopharmacology. A Review of Progress 1957–1967” (D. H. Efron, J. O. Cole, J. Levine, and J. R. Wittenborn, eds.), pp. 867–878, Superintendent of Documents, US Government Printing Office, P.H.S. Publication No. 1836, Washington D.C.Google Scholar
  339. Oliverio, A., 1974, Genetic factors in the control of drug effects on the behaviour of mice, in “The Genetics of Behaviour” U. H. F. v. Abeelen, ed.), pp. 375–395, North-Holland, Amsterdam.Google Scholar
  340. Oliverio, A., and Bovet, D., 1975, Genetic and biochemical analysis of cholinergic mechanisms in behavior, in “Cholinergic Mechanisms” (P. G. Waser, ed.), pp. 531–540, Raven, New York.Google Scholar
  341. Oliverio, A., and Castellano, C., 1975, Exploratory activity: Genetic analysis of its modification by various pharmacologic agents, in “Psychopharmacogenetics” (B. E. Eleftheriou, ed.), pp. 99–126, Plenum, New York.Google Scholar
  342. Oliverio, A., Bovet-Nitti, F., and Bovet, D., 1966, Action de la scopolamine et de quelques médicaments parasympatholytiques sur le conditionnement d’évitement chez la souris, C.R. Accu/. Sci. 262 (D): 1796–1801.Google Scholar
  343. Orsingher, O. A., and Fulginiti, S., 1971, Effects of alpha-methyl tyrosine and adrenergic blocking agents on the facilitating action of amphetamine and nicotine on learning in rats, Psychopharmacologia 19: 231–240.Google Scholar
  344. Orsingher, O. A., and Fulginiti, S. 1973, Influence of peripheral mechanisms on the facilitatory learning action of amphetamine and nicotine in rats, Pharmacology 9: 138–144.Google Scholar
  345. Pauling, P. J., and Petcher, T. J., 1970, Interaction of atropine with the muscarinic receptor, Nature (London) 228: 673–674.Google Scholar
  346. Pazzagli, A., and Pepeu, G., 1965, Amnesic properties of scopolamine and brain acetylcholine in the rat, Int. J. Neuropharmacol. 4: 291–299.Google Scholar
  347. Pedigo, N. W., Dewey, W. L., and Harris, L. S., 1975, Determination and characterization of the antinociceptive activity of intraventricularly administered acetylcholine in mice, J. Pharmacol. Exp. Ther. 193: 845–852.Google Scholar
  348. Pepeu, G., 1963, Effect of tremorine and some anti-Parkinson’s disease drugs on acetylcholine in the rat’s brain, Nature (London) 200: 895.Google Scholar
  349. Pert, A., 1975, The cholinergic system and nociception in the primate: Interactions with morphine, Psychopharmacologia 44: 131–137.Google Scholar
  350. Pert, A., and Avis, H. H., 1974, Dissociation between scopolamine and mecamylamine during fear conditioning in rats, Physiol. Psychol. 2: 111–116.Google Scholar
  351. Pert, A., and Maxey, G., 1975, Asymmetrical cross-tolerance between morphine and scopolamine induced antinociception in the primate: Differential sites of action, Psychopharmacologia 44: 139–145.Google Scholar
  352. Phillis, J. W., 1968, Acetylcholine release from the cerebral cortex: Its role in cortical arousal, Brain Res. 7: 378–389.Google Scholar
  353. Phillis, J. W., and Chong, G. C., 1965, Acetylcholine release from the cerebral and cerebellar cortices: Its role in cortical arousal, Nature (London) 207:1253–1255.Google Scholar
  354. Polak, R. L., 1965, Effect of hyoscine on the output of acetylcholine into perfused cerebral ventricles of cats, J. Physiol. (London) 181: 317–323.Google Scholar
  355. Polak, R. L., 1970, An analysis of the stimulating action of atropine on release and synthesis of acetylcholine in cortical slices from rat brain, in “Drugs and Cholinergic Mechanisms in the CNS” (E. Heilbronn and A. Winter, eds.), pp. 323–338, Research Institute of National Defence, Stockholm.Google Scholar
  356. Polak, R. L., 1971, Stimulating action of atropine on the release of acetylcholine by rat cerebral cortex in vitro, Br. J. Pharmacol. 41:600–606.Google Scholar
  357. Polak, R. L., and Meeuws, M. M., 1966, The influence of atropine on the release and uptake of acetylcholine by the isolated cerebral cortex of the rat, Biochem. Pharmacol. 15: 989–992.Google Scholar
  358. Potempska, A., Gradkowska, M., and Oderfeld-Nowak, B., 1975, Early changes in acetylcholine pools in the hippocampus of the rat brain after septal lesions, J. Neurochem. 24: 787–789.Google Scholar
  359. Pradhan, S. N., 1970, Effects of nicotine on several schedules of behavior in rats, Arch. Int. Pharmacodyn. Ther. 183: 127–138.Google Scholar
  360. Pradhan, S. N., and Bowling, C., 1971, Effects of nicotine on self-stimulation in rats, J. Pharmacol. Exp. Ther. 176: 229–243.Google Scholar
  361. Pradhan, S. N., and Dutta, S. N., 1970, Comparative effects of nicotine and amphetamine on timing behavior in rats, Neuropharmacology 9: 9–16.Google Scholar
  362. Pradhan, S. N., and Dutta, S. N., 1971, Central cholinergic mechanisms and behavior, Int. Rev. Neurobiol. 14: 173–231.Google Scholar
  363. Pradhan, S. N., and Roth, T., 1968, Comparative behavioral effects of several anticholinergic agents in rats, Psychopharmacologia 12: 358–366.Google Scholar
  364. Pradhan, S. N., Beer, B., Roth, T., and Dutta, S. N., 1967, Some behavioral effects of ditran (JB 329) in rats, Arch. Int. Pharmacodyn. Ther. 170: 264–275.Google Scholar
  365. Price, M. T. C., and Cooper, R. M., 1975, U-shaped functions in a shock-escape task, J. Comp. Physiol. Psychol. 89: 600–606.Google Scholar
  366. Puerto, A., Molina, F., Rogers, J., and Moss, D. E., 1976, Physostigmine-induced amnesia for an escape response 12 to 72 hours after training, Behay. Biol. 16: 85–90.Google Scholar
  367. Racagni, G., Cheney, D. L., Trabucchi, M., and Costa, E., 1976, In vivo actions of clozapine and haloperidol on the turnover rate of acetylcholine in rat striatum, J. Pharmacol. Exp. Ther. 196: 323–332.Google Scholar
  368. Ratkovie, D., Stern, P., and Bo“skovie, B., 1965, Über die Wirkung des Tremotins auf die Cholinacetylase, Bull. Sci. Cons. Acad. RSF Yougosl. 10:40.Google Scholar
  369. Rawat, A. K., 1974, Brain levels and turnover rates of presumptive neurotransmitters as influenced by administration and withdrawal of ethanol in mice, J. Neurochem. 22: 915–922.Google Scholar
  370. Ray, O. S., and Barrett, R. J., 1975, Behavioral, pharmacological, and biochemical analysis of genetic differences in rats, Behay. Biol. 15: 391–417.Google Scholar
  371. Rech, R. H., 1968, Effects of cholinergic drugs on poor performance of rats in a shuttle-box, Psychopharmacologia 12: 371–383.Google Scholar
  372. Rech, R. H., and Miller, R. K., 1968, Interactions between the effects of septal lesions and drugs on the shuttle-box avoidance of rats, Pharmacologist 10:205 (Abstract No. 290).Google Scholar
  373. Renfro, C. T., Freedman, P. E., and Rosen, A. J., 1972, The concurrent effects of scopolamine on spontaneous motor activity and the acquisition of an active avoidance response, Neuropharmacology 11: 337–346.Google Scholar
  374. Robustelli, F., 1963, Azione della nicotina sull’apprendimento del ratto nel labirinto, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Nat. Ser. VIII 34: 704–709.Google Scholar
  375. Rommelspacher, H., and Kuhar, M. J., 1974, Effects of electrical stimulation on acetylcholine levels in central cholinergic nerve terminals, Brain Res. 81: 243–251.Google Scholar
  376. Rommelspacher, H., and Kuhar, M. J., 1975, Effects of dopaminergic drugs and acute medial forebrain bundle lesions on striatal acetylcholine levels, Life Sci. 16: 65–70Google Scholar
  377. Rosen, G. M. and Rauckman, E. J., 1976, Effect of temperature upon the conformation of acetylcholine receptors, Biochem. Pharmacol. 25: 1329–1332.Google Scholar
  378. Rosié, N., and Bignami, G., 1970a, Depression of two-way avoidance learning and enhancement of passive avoidance learning by small doses of physostigmine, Neuropharmacology 9: 311–316.Google Scholar
  379. Rosié, N., and Bignami, G., 1970b, Scopolamine effects on go—no go avoidance discriminations: Influence of stimulus factors and primacy of training, Psychopharmacologia 17: 203–215.Google Scholar
  380. Ross, J. F., and Grossman, S. P., 1974, Intrahippocampal applications of cholinergic agents and blockers: Effects on rats in differential reinforcement of low rates and Sidman avoidance paradigms, J. Comp. Physiol. Psychol. 86: 590–600.Google Scholar
  381. Ross, J. F., McDermott, J., and Grossman, S. P., 1975, Disinhibitory effects of intrahippocampal or intrahypothalamic injections of anticholinergic compounds in the rat, Pharmacol. Biochem. Behay. 3: 631–639.Google Scholar
  382. Salvaterra, P. M., and Moore, W. J., 1973, Binding of a bungarotoxin to particulate fractions of rat and guinea pig brain, Biochem. Biophvs. Res. Commun. 55: 1311–1318Google Scholar
  383. Schuberth, J., Sollenberg, J., Sundwall, A., and Sörbo, B., 1966, Acetylcoenzyme A in brain. The effect of centrally active drugs, insulin coma and hypoxia, J. Neurochem. 1 3: 819–822.Google Scholar
  384. Schuberth, J., Sparf, B., and Sundwall, A., 1969. A technique for the study of acetylcholine turnover in mouse brain in vivo, J. Neurochem. 16: 695–700.Google Scholar
  385. Schwartzbaum, J. S., and Kreinick, C. J., 1975, Electrophysiological and behavioral reactivity to photic stimuli following septal lesions and pharmacological treatments in rats, J. Comp. Physiol. Psychol. 88: 128–146.Google Scholar
  386. Schwartzbaum, J. S., Green, R. H., Beatty, W. W., and Thompson, J B., 1967, Acquisition of avoidance behavior following septal lesions in the rat, J. Comp. Physiol. Psychol. 63: 95104.Google Scholar
  387. Schwartzbaum, J. S., Ide Johanson, L., and Belgrade, J., 1974, Comparative effects of scopolamine and amphetamine upon behavioral reactivity and visual evoked potentials to flashes in rats, J. Comp. Physiol. Psychol. 86: 1044–1051.Google Scholar
  388. Sepinwall, J., 1966, Cholinergic stimulation of the brain and avoidance behavior, Psychon. Sci. 5: 93–94.Google Scholar
  389. Sepinwall, J., 1969, Enhancement and impairment of avoidance behavior by chemical stimulation of the hypothalamus, J. Comp. Plnyiol. Psychol. 68: 393–399.Google Scholar
  390. Sepinwall, J., and Grodsky, F. S., 1969, Effects of cholinergic stimulation or blockade of the rat hypothalamus on discrete-trial conflict behavior, Life Sci. 8 (11): 45–52.Google Scholar
  391. Sethy, V. H., 1976, Effects of chronic treatment with neuroleptics on striatal acetylcholine concentration, J. Neurochem. 27: 325–326.Google Scholar
  392. Shute, C. C. D., and Lewis, P. R., 1967, The ascending cholinergic reticular system: Neocortical, olfactory and subcortical projections, Brain 90: 497–520.Google Scholar
  393. Shute, C. C. D., and Lewis, P. R., 1975, Cholinergic pathways, Pharmacol. Ther., Part B 1: 79–87.Google Scholar
  394. Signorelli, A., 1976, Influence of physostigmine upon consolidation of memory in mice, J. Comp. Physiol. Psychol. 90: 658–664.Google Scholar
  395. Silver, A., 1974, “The Biology of Cholinesterases,” North-Holland, Amsterdam.Google Scholar
  396. Silvette, H., Hoff, E. C., Larson, P. S., and Haag, H. B., 1962, The actions of nicotine on central nervous system functions, Pharmacol. Rev. 14: 137–173.Google Scholar
  397. Simpson, L. L., 1974, The use of neuropoisons in the study of cholinergic transmission, Annu. Rev. Pharmacol. 14: 305–317.Google Scholar
  398. Singh, H. K., Ott, T., and Matthies, H., 1974, Effect of intrahippocampal injection of atropine on different phases of a learning experiment, Psychopharmacologia 38: 247–258Google Scholar
  399. Smith, C. M., 1974, Acetylcholine release from the cholinergic septo—hippocampal pathway, Life Sci. 14: 2159–2166.Google Scholar
  400. Smith, A. A., and Calhoun, W. H., 1972, Scopolamine: Effects on conditioned suppression, Neuropharmacology 11: 347–350.Google Scholar
  401. Snyder, S. H., and Bennett, J. P., Jr., 1976, Neurotransmitter receptors in the brain: Biochemical identification, Annu. Rev. Physiol. 38: 153–175.Google Scholar
  402. Snyder, S. H., Chang, K. J., Kuhar, M. J., and Yamamura, H. I., 1975, Biochemical identification of the mammalian muscarinic cholinergic receptor, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34: 1915–1921.Google Scholar
  403. Sorensen, J. P., Jr., and Harvey, J. A., 1971, Decreased brain acetylcholine after septal lesions in rats: correlation with thirst, Physiol. Behay. 6: 723–725.Google Scholar
  404. Soudijn, W., Van Wijngaarden, I., and Ariëns, E. J., 1973, Dexetimide, a useful tool in acetylcholine-receptor localization, Eur. J. Pharmacol. 24: 43–48.Google Scholar
  405. Srebro, B., Oderfeld-Nowak, B., Klodos, I., Dbrowska, J., and Narkiewicz, 0., 1973, Changes in acetylcholinesterase activity in hippocampus produced by septal lesions in the rat, Life Sci. 12 (I): 261–270.Google Scholar
  406. Stanes, M. D., Brown, C. P., and Singer, G., 1976, Effect of physostigmine on Y-maze discrimination retention in the rat, Psychopharmacologia 46: 269–276.Google Scholar
  407. Stein, L., 1968, Chemistry of reward and punishment, in “Psychopharmacology, A Review of Progress 1957–1967” (D. H. Efron, J. O. Cole, J. Levine, and J. R. Wittenborn, eds.), pp. 105–123, Superintendent of Documents, US Government Printing Office, P.H.S. Publication No. 1836, Washington D.C.Google Scholar
  408. Stewart, W. J., 1975a, Size of the environment as a determiner of effects of scopolamine, Psychol. Rep. 37: 175–178.Google Scholar
  409. Stewart, W. J., 1975b, Environmental complexity does affect scopolamine-induced changes in activity, Neurosci. Lett. 1: 121–125.Google Scholar
  410. Stewart, W. J., 1975c, The effect of scopolamine on the stimulus change phenomenon, Life Sci, 17: 1733–1736.Google Scholar
  411. Stewart, W. J., and Blain, S., 1975, Dose-response effects of scopolamine on activity in an open field, Psychopharmacologia 44: 291–295.Google Scholar
  412. Stitzer, M., Morrison, J., and Domino, E. F., 1970, Effects of nicotine on fixed-interval behavior and their modification by cholinergic antagonists, J. Pharmacol. Exp. Ther. 171: 166–177.Google Scholar
  413. Stone, G. C., 1960, Effects of some centrally acting drugs upon learning of escape and avoidance habits, J. Comp. Physiol. Psychol. 53: 33–37.Google Scholar
  414. Stone, G. C., 1964, Effects of drugs on nondiscriminated avoidance behavior. I. Individual differences in dose-response relationships, Psychopharmacologia 6: 245–255.Google Scholar
  415. Stone, G. C., 1965, Effects of drugs on avoidance behavior. II. Individual differences in susceptibilities, Psychopharmacologia 7: 283–302.Google Scholar
  416. Suits, E., and Isaacson, R. L., 1968, The effects of scopolamine hydrobromide on one-way and two-way avoidance learning in rats, Int. J. Neuropharmacol. 7: 441–446.Google Scholar
  417. Suits, E., and Isaacson, R. L., 1970, Behavioral effects: Hippocampal destruction and scopolamine, Psychon. Sci. 18: 9–11.Google Scholar
  418. Szerb, J. C., 1964, The effect of tertiary and quaternary atropine on cortical acetylcholine output and on the electroencephalogram in cats, Can. J. Physiol. Pharmacol. 42: 303–314Google Scholar
  419. Szerb, J. C., and Somogyi, G. T., 1973, Depression of acetylcholine release from cerebral cortical slices by cholinesterase inhibition and by oxotremorine, Nature (London) New Biol. 241: 121–122.Google Scholar
  420. Szwejkowska, G., 1968, The effects of atropine on alimentary instrumental conditioned reflexes in normal and prefrontal dogs, Acta Biol. Exp. (Warsaw) 28: 11–21Google Scholar
  421. Teitelbaum, H., 1976, Hippocampal activity and scopolamine, Science 192: 914–915Google Scholar
  422. Thompson, R. W., and Nielsen, C., 1972, The effect of scopolamine on the Kamin effect: A test of the parasympathetic overreaction hypothesis, Psychon. Sci. 28: 140–142.Google Scholar
  423. Trabucchi, M., Cheney, D. L., Hanin, I., and Costa, E., 1975, Application of principles of steady-state kinetics to the estimation of brain acetylcholine turnover rate: Effects of oxotremorine and physostigmine, J. Pharmacol. Exp. Ther. 194: 57–64.Google Scholar
  424. Ursin, H., 1976, Inhibition and the septal nudei: Breakdown of the single concept model, Acta Neurobiol. Exp. 36: 91–115.Google Scholar
  425. Vanderwolf, C. H., 1975, Neocortical and hippocampal activation in relation to behavior: Effects of atropine, eserine, phenothiazines, and amphetamine, J. Comp. Physiol. Psychol. 88: 300–323.Google Scholar
  426. Vanderwolf, C. H., 1976, Hippocampal activity and scopolamine, Science 192: 914Google Scholar
  427. Vasquez, B. J., and Izquierdo, I., 1970, The effect of amphetamine, nicotine and atropine on pseudoconditioned responses of rats, Pharmacology 3: 21–24.Google Scholar
  428. Vogel, J. R., 1975, Conditioning of taste aversion by drugs of abuse, unpublished manuscript. Von Euler, U. S. (ed.), 1965, “Tobacco Alkaloids and Related Compounds,” Pergamon, Oxford.Google Scholar
  429. Wada, J. A., and Matsuda, M., 1971, Learned escape behavior induced by brain electrical stimulation and various neuroactive agents, Exp. Neurol. 32: 357–365.Google Scholar
  430. Wanner, H. U., and Bättig, K., 1966, Wirkung von Nikotin und Amphetamin auf die Selbstreizung bei der Ratte, Helv. Physiol. Acta. 24: C122 - C124.Google Scholar
  431. Warburton, D. M., 1972, The cholinergic control of internal inhibition, in “Inhibition and Learning” (R. Boakes and M. S. Halliday, eds.), pp. 431–460, Academic, London.Google Scholar
  432. Warburton, D. M., 1977, Stimulus selection and behavioral inhibition, in “Handbook of Psychopharmacology. Section Two. Behavioral Pharmacology in Animals, Vol. 8, Drugs, Neurotransmitters and Behavior” (L. L. Iversen, S. Iversen, and S. H. Snyder, eds.), pp. 384–431, Plenum, New York.Google Scholar
  433. Warburton, D. M., and Groves, P. M., 1969, The effects of scopolamine on habituation of acoustic startle in rats, Commun. Behay. Biol. 3: 289–293.Google Scholar
  434. Waser, P. G. (ed.), 1975, “Cholinergic Mechanisms,” Raven, New York.Google Scholar
  435. Weiss, B., and Heller, A., 1969, Methodological problems in evaluating the role of choliner-gic mechanisms in behavior, Fed. Proc. Fed. Am. Soc. Exp. Biol. 28: 135–146.Google Scholar
  436. Williams, J. M., Hamilton, L. W., and Carlton, P. L., 1974, Pharmacological and anatomical dissociation of two types of habituation, J. Comp. Physiol. Psychol. 87: 724–732Google Scholar
  437. Williams, J. M., Hamilton, L. W., and Carlton, P. L., 1975, Ontogenetic dissociation of two classes of habituation, J. Comp. Physiol. Psychol. 87:733–737.Google Scholar
  438. Worsham, E., and Hamilton, L. W., 1973, Acquisition and retention of avoidance behaviors following septal lesions or scopolamine injections in rats, Physiol. Psychol. 1: 219–226Google Scholar
  439. Wyatt, R. J., 1976, Biochemistry and schizophrenia (Part IV). The neuroleptics—Their mechanism of action: A review of the biochemical literature, Psychopharmacol. Bull. 12 (3): 5–50.Google Scholar
  440. Yamamura, H. I., and Snyder, S. H., 1974a, Muscarinic cholinergic binding in rat brain, Proc. Nat. Acad. Sci. USA 71: 1725–1729.Google Scholar
  441. Yamamura, H. I., and Snyder, S. H., 1974b, Postsynaptic localization of muscarinic cholinergic receptor binding in rat hippocampus, Brain Res. 78: 320–326.Google Scholar
  442. Yamamura, H. I., Kuhar, M. J., Greenberg, D., and Snyder, S. H., 1974a, Muscarinic cholinergic receptor binding: Regional distribution in monkey brain, Brain Res. 66: 541–546.Google Scholar
  443. Yamamura, H. I., Kuhar, M. J., and Snyder, S. H., 1974b, In vivo identification of muscarinic cholinergic receptor binding in rat brain, Brain Res. 80:170–176.Google Scholar
  444. Yamamura, H. I., Manian, A. A., and Snyder, S. H., 1976, Muscarinic cholinergic receptor binding: Influence of pimozide and chlorpromazine metabolites, Life Sci. 18: 685–692.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Giorgio Bignami
    • 1
  • Hanna Michałek
    • 1
  1. 1.Laboratorio di FarmacologiaIstituto Superiore di SanitàRomaItaly

Personalised recommendations