Neurochemical Changes Elicited by Stress

Behavioral Correlates
  • Hymie Anisman


The response of an organism to environmental stimulation is largely dependent upon the potential consequences of the stimuli on the organism’s well being. If the stimulation is not associated with either alimentary or aversive consequences, then habituation should occur without the organism experiencing any adverse effects. However, when stimulation threatens biological equilibrium, then adaptive mechanisms need to be called upon in order to resurrect the original state of affairs. As suggested by Barry and Buckley (1966), the term stress should be considered as stimulation that requires behavioral and/or physiological adjustments.


Tyrosine Hydroxylase Locus Coeruleus Corticosterone Level Inescapable Shock Neurochemical Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeelen, J. H. F. v., 1974, Genotype and cholinergic control of exploratory behaviour in mice, in “The Genetics of Behaviour” (J.H.F.v. Abeelen, ed.), pp. 347–374, North-Holland Publishing Co., Amsterdam.Google Scholar
  2. Abeelen, J. H. F. v., and Strijbosch, H., 1969, Genotype-dependent effects of scopolamine and eserine on exploratory behavior in mice, Psychopharmacologia 16: 81–88.Google Scholar
  3. Abeelen, J. H. F. v., Smits, A. J. M., and Raaijmakers, W. G. M., 1970, Central location of a genotype-dependent cholinergic mechanism controlling exploratory behavior in mice, Psychopharmacologia 19: 324–328.Google Scholar
  4. Akiskal, H. S., and McKinney, W. T., 1973, Depressive disorders: Toward a unified hypothesis, Science 182: 20–29.Google Scholar
  5. Akiskal, H. S., and McKinney, W. T., 1975, Overview of recent research in depression. Integration of ten conceptual models into a comprehensive clinical frame, Arch. Gen. Psychiatry 32: 285–305.Google Scholar
  6. Al-Ani, A. T., Tunnicliff, G., Rick, G., and Kerkut, G. A., 1970, GABA production, acetylcholinesterase activity and biogenic amine levels in brain for mouse strains differing in spontaneous activity and reactivity, Life Sci. 9: 21–27.Google Scholar
  7. Andén, N. E., Dahlstrom, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, U., 1966, Ascending monoamine neurones to the telencephalon and diencephalon Acta Physiol. Scand. 67: 313–326.Google Scholar
  8. Angrist, B. M., Shopsin, B., and Gershon, S., 1971, The comparative psychotomimetic effects of stereoisomers of amphetamine, Nature (London) 234: 152–154.Google Scholar
  9. Angrist, B. M., Sathananathan, G., Wilk, S., and Gershon, S., 1973, Behavioural and biochemical effects of L-Dopa in psychiatric patients, in “Frontiers in Catecholamine Research” (E. Usdin and S. H. Snyder, eds.), pp. 991–994, Pergamon Press, Oxford.Google Scholar
  10. Anisman, H., 1973, Cholinergic mechanisms and alterations in behavioral suppression as factors producing time dependent changes in avoidance performance, J. Comp. Physiol. Psychol. 83: 456–477.Google Scholar
  11. Anisman, H., 1975a, Time dependent variations in aversively motivated behaviors: Nonasso-ciative effects of cholinergic and catecholaminergic activity, Psychol. Rev. 82: 359–385Google Scholar
  12. Anisman, H., 1975b, Differential effects of scopolamine and d-amphetamine on avoidance: Strain interactions, Pharmacol. Biochem. Behay. 3: 809–817.Google Scholar
  13. Anisman, H., 1976, Effects of scopolamine and d-amphetamine on locomotor activity before and after shock: A diallel analysis in mice, Psychopharmacology 48: 165–173.Google Scholar
  14. Anisman, H., and Cygan, D., 1975, Central effects of scopolamine and d-amphetamine on locomotor activity: Interaction with strain and stress variables, Neuropharmacology 14: 835–840.Google Scholar
  15. Anisman, H., and Kokkinidis, L., 1974, Effects of central and peripheral adrenergic and cholinergic modification on time dependent processes in avoidance performance, Behay. Biol. 10: 161–171.Google Scholar
  16. Anisman, H., and Waller, T. G., 1973, Effects of inescapable shock on subsequent avoidance performance: Role of response repertoire changes, Behay. Biol. 9: 331–355.Google Scholar
  17. Anisman, H., Wahlsten, D., and Kokkinidis, L., 1975, Effects of d-amphetamine and scopolamine on activity before and after shock in three mouse strains, Pharmacol. Biochem. Behay. 3: 819–824.Google Scholar
  18. Aprison, M. H., and Hingtgen, J. N., 1966, Neurochemical correlates of behavior V. Differential effects of drugs on approach and avoidance behavior in rats with related changes in brain serotonin and norepinephrine, Recent Adv. Biol. Psychiat. 8: 87–100.Google Scholar
  19. Aprison, M. H., and Hingtgen, J. N., 1969, Brain acetylcholine and excitation in avoidance behavior, Biol. Psychiat. 1: 87–89.Google Scholar
  20. Aprison, M. H., and Hingtgen, J. N., 1970, Evidence of a central cholinergic mechanism functioning during drug-induced excitation in avoidance behavior, in “Drugs and Cholinergic Mechanisms in the CNS” (E. Heilbronn, and A. Winter, eds.), pp. 543–560, Stockholm, Forsvarets Forskning-Sansalt, Sweden.Google Scholar
  21. Aprison, M. H., Kariya, T., Hingtgen, J., and Toru, M., 1968, Changes in acetylcholine, norepinephrine and 5-hydroxytryptamine concentrations in several discrete brain areas of the rat during behavioral excitation, Neurochemistry 15: 1131–1139.Google Scholar
  22. Aprison, M. H., Hingtgen, J. N., and McBride, W. J., 1975, Serotonergic and cholinergic mechanisms during disruption of approach and avoidance behavior, Fed. Proc. 34: 1813–1822.Google Scholar
  23. Balazovjech, I., Kvetnanskÿ, R., Harsanyi, M., and Mikulaj, L., 1976, Effect of workload on plasma dopamine-/3-hydroxylase activity and cortisol in patients with essential hypertension, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 549–555, Pergamon Press, Oxford.Google Scholar
  24. Barchas, J. D., and Freedman, D. X., 1963, Brain amines: Response to physiological stress, Biochem. Pharmacol. 12: 1232–1235.Google Scholar
  25. Barry, H., and Buckley, J. P., 1966, Drug effect on animal performance and the stress syndrome, J. Pharm. Sci. 55: 1159–1183.Google Scholar
  26. Bartholini, G., Stadler, H., and Lloyd, K. G., 1973, Cholinergic—dopaminergic relation in different brain structures, in “Frontiers in Catecholamine Research” (E. Usdin and S. H. Snyder, eds.), pp. 741–746, Pergamon Press, Oxford.Google Scholar
  27. Bartolini, A., and Pepeu, G., 1970, Effect of adrenergic blockers on spontaneous and stimulated acetylcholine output from the cerebral cortex of the cat, Pharmacol. Res. Common. 2: 23–29.Google Scholar
  28. Bignami, G., 1976, Nonassociative explanations of behavioural changes induced by central cholinergic drugs, Acta Neurobil. Exp. 36: 5–90.Google Scholar
  29. Blanchard, R. J., and Blanchard, D. C., 1970, Dual mechanisms in passive avoidance, I. Psychon. Sci. 19: 1–2.Google Scholar
  30. Blanchard, R. J., and Blanchard, D. C., 1971, Defensive reactions in the albino rat, Learn. Motiv. 2: 351–362.Google Scholar
  31. Bliss, E. L., and Ailion, J., 1971, Relationship of stress and activity to brain dopamine and homovanillic acid, Life Sci. 10: 1161.Google Scholar
  32. Bliss, E. L., Ailion, J., and Zwanziger, J., 1968, Metabolism of norepinephrine, serotonin, and dopamine in rat brain with stress, J. Pharmacol. Exp. Ther. 164: 122–134.Google Scholar
  33. Bliss, E. L., Thatcher, W., and Ailion, J., 1972, Relationship of stress to brain sertonin and 5hydroxyindoleacetic acid, J. Psychiat. Res. 9: 71–80.Google Scholar
  34. Bolles, R. C., 1970, Species-specific defense reactions and avoidance learning, Psychol. Rev. 77: 32–48.Google Scholar
  35. Bolles, R. C., 1971, Species-specific defense reactions, in “Aversive Conditioning and Learning” (F. R. Brush, ed.), pp. 183–233, Academic Press, New York.Google Scholar
  36. Brain, P., 1975, What does individual housing mean to a mouse?, Life Sci. 16: 187–200Google Scholar
  37. Breitner, C., Picchioni, A., and Chin, L., 1963, Neurohormone levels in brain after CNS stimulation including electrotherapy, J. Neuropsychiatry 5: 153.Google Scholar
  38. Brookshire, K. H., Littman, R. A., and Stewart, C. N., 1961, Residua of shock trauma in the white rat: A three factor theory, Psychol. Mon. 75:10.Google Scholar
  39. Brown, G. M., Krigstein, E., Dankova, J., and Hornykiewicz, O., 1972, Relationship between hypothalamic and median eminence catecholamines and thyroid function, Neuroendocrinology 10: 207–217.Google Scholar
  40. Brown, R. M., Snider, S. R., and Carlsson, A., 1974, Changes in biogenic amine synthesis and turnover induced by hypoxia and/or foot-shock stress II. The central nervous system, J. Neur. Trans. 35: 293–305.Google Scholar
  41. Brush, F. R., 1971, Retention of aversively motivated behavior, in “Aversive Conditioning and Learning” (F. R. Brush, ed.), pp. 401–465, Academic Press, New York.Google Scholar
  42. Brush, F. R., and Levine, S., 1966, Adrenocortical activity and avoidance learning as a function of time after fear conditioning, Physiol. Behan. 1: 309–311.Google Scholar
  43. Buckley, J. P., 1973, Biochemical and physiological effects of intermittent neurogenic stress, in “Hormones, Metabolism and Stress” (S. Nemeth, ed.), pp. 165–177, Publishing house of the Slovak Academy of Sciences, Bratislava.Google Scholar
  44. Bunney, W. E., and Murphy, D. C., 1973, ‘l’he behavioral switch process and psychopathology, in “Biological Psychiatry” U. Mendels, ed.), John Wiley, New York.Google Scholar
  45. Bunney, W. E., Mason, J. W., Roatch, J. F., and Hamburg, D. A., 1965, A psychoendocrine study of severe psychotic depressive crises, Am. J. Psychiatry 122: 72–80.Google Scholar
  46. Bunney, W. E., Fawcett, J., Davis, J., and Gifford, S., 1969, Further evaluation of urinary 17OHCS in suicidal patients, Arch. Gen. Psychiatry 21: 138.Google Scholar
  47. Campbell, B. A., and Candland, D. K., 1961, Effects of prior shock on the emotionality of young rats in an open field, Can. J. Psychol. 15: 1–5.Google Scholar
  48. Carlsson, A., 1965, Drugs which block the storage of 5-hydroxytryptamine and related amines, in “5-Hydroxytryptamine and Related Indolalkylamines, Handbook of Experimental Pharmacology, Vol. 19” ( V. Erspamer, ed.), Springer-Verlag, Berlin.Google Scholar
  49. Carr, L. A., and Moore, K. E., 1968, Effects of reserpine and a-methyltyrosine on brain catecholamines and the pituitary-adrenal response to stress, Neuroendocrinology 3: 285–302.Google Scholar
  50. Carroll, B., and Davies, B., 1970, Clinical associations of 11-hydroxycorticoid suppression and non-suppression in severe depressive illnesses, Br. Med. J. 1: 789.Google Scholar
  51. Chattopadhyay, S., and Uniyal, M., 1975, The interaction of stress and corticosteroid on the hypothalamus as reflected by Gamma aminobutyric acid content. Proceedings of the Fifth Asia and Oceania Congress of Endocrinology.Google Scholar
  52. Ciaranello, R. D., Dornbusch, J. N., and Barchas, J. D., 1972a, Regulation of adrenal phenylethanolamine-n-methyltransferase activity in three inbred mouse strains, Mol. Pharmacol. 8: 511–520.Google Scholar
  53. Ciaranello, R. D., Barchas, R., Kessler, S., and Barchas, J. D., 1972b, Catecholamines: Strain differences in biosynthetic enzyme activity in mice, Life Sci. 11: 565–577.Google Scholar
  54. Conner, R. L., 1972, Hormones, biogenic amines and aggression, in “Hormones and Behavior” (S. Levine, ed.), pp. 109–233, Academic Press, New York.Google Scholar
  55. Coover, G. D., Ursin, H., and Levine, S., 1973, Plasma corticosterone levels during active avoidance Tearing in rats, J. Comp. Physiol. Psychol. 82: 170–174.Google Scholar
  56. Conodi, H., Fuxe, K., and Hokfelt, T., 1968, The effect of immobilization stress on the activity of central monoamine neurons, Life Sci. 7:107–112.Google Scholar
  57. Davies, B., Carroll, B. J., and Mowbray, R. M., 1972, “Depressive Illness: Some Research Studies,” Charles C Thomas, Springfield, Illinois.Google Scholar
  58. Davis, M., and Sheard, M. H., 1974, Habituation and sensitization of the rat startle response: Effects of raphé lesions, Physiol. Behay. 12: 425–433.Google Scholar
  59. Deffenu, G., Bartolini, A., and Pepeu, G., 1970, Effect of amphetamine on cholinergic systems of the cerebral cortex of the cat, in “Amphetamines and Related Compounds” (E. Costa and S. Garattini, eds.), pp. 357–368, Raven Press, New York.Google Scholar
  60. Douglas, D., and Anisman, H., 1975, Learned helplessness or expectancy incongruency: Effects of failure on subsequent performance, J. Exp. Psychol. 1: 411–417.Google Scholar
  61. Ebel, A., Hermetet, J. C., and Mandel, P., 1973, Comparative study of acetylcholinesterase and choline acetyltransferase enzyme activity in brain of DBA and C57 mice, Nature (London), New Biol. 242: 56–57.Google Scholar
  62. Eleftheriou, B. E., 1974, A gene influencing hypothalamic norepinephrine levels in mice, Brain Res. 70: 538–540.Google Scholar
  63. Eleftheriou, B. E., and Church, R. L., 1968, Brain levels of serotonin and norepinephrine in mice after exposure to aggression and defeat, Physiol. Behay. 3: 977–980.Google Scholar
  64. Fekete, M., Herman, J., Palkovits, M., and Stark, E., 1976, ACTH induced changes in the transmitter amine concentration of individual brain nuclei of the rat, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ and I. J. Kopin, eds.), pp. 69–75, Pergamon Press, Oxford.Google Scholar
  65. Fibiger, H. C., Phillips, A. G., and Zis, A. P., 1974, Deficits in instrumental responding after 6-hydroxydopamine lesions of the nigro-neostriatial dopaminergic projection, Pharmacol. Biochem. Behay. 2: 87–96.Google Scholar
  66. Fibiger, H. C., Zis, A. P., and Phillips, G., 1975, Haloperidol-induced disruption of conditioned avoidance responding: Attenuation by prior training or by anticholinergic drugs, Eur. J. Pharmacol. 30: 309–314.Google Scholar
  67. Foote, W. E., Lieb, J. P., Martz, R. L., and Gordon, M. W., 1972, Effect of hydrocortisone on single unit activity in midbrain raphe, Brain Res. 41: 242–244.Google Scholar
  68. Frontali, M., Amorico, L., de Acetis, L., and Bignami, G., 1976, A pharmacological analysis of processes underlying differential responding: A review and further experiments with scopolamine, amphetamine, LSD-25, chlordiazepoxide, physostigmine and chlorpromazine, Behay. Biol. 18: 1–74.Google Scholar
  69. Fuxe, K., Hokfelt, T., and Ungerstedt, U., 1968, Localization of indolealkylamines in C.N.S., in “Advances in Pharmacology” (S. Garattini and P. A. Shore, eds.), Academic Press, New York.Google Scholar
  70. Ganong, W. F., 1974, The role of catecholamines and acetylcholine in the regulation of endocrine function, Life Sci. 15: 1401–1414.Google Scholar
  71. Ganong, W. F., Kramer, N., Reid, I. A., Boryczka, A. T., and Shackelford, R., 1976, Inhibition of stress-induced ACTH secretion by norepinephrine in the dog: Mechanisms and site of action, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 139–143, Pergamon Press, Oxford.Google Scholar
  72. Gellhorn, E., 1957, “Autonomic imbalance and the hypothalamus,” University of Minnesota Press, Minneapolis.Google Scholar
  73. Gibbons, J. L., 1964, Corticol secretion rate in depressive illness, Arch. Gen. Psychiatry 10: 573–575.Google Scholar
  74. Gibbons, J. L., and Miltugh, P. R., 1962, Plasma cortisol in depressive illness, J. Psychiat. Res. 1: 162–171.Google Scholar
  75. Glazer, H. I., Weiss, J. M., Pohorecky, L. A., and Miller, N. E., 1975, Monoamines as mediators of avoidance-escape behavior, Psychosom. Med. 37: 535–543.Google Scholar
  76. Glowinski, J., Kopin, I. J., and Axelrod, J., 1965, Metabolism of 3H-norepinephrine in rat brain, J. Neurochem. 12:25–30.Google Scholar
  77. Goldberg, M. E., lnsalaco, J. R., Hefner, M. A., and Salama, A. I., 1973, Effect of prolonged isolation on learning, biogenic amine turnover and aggressive behavior in three strains of mice, Neuropharmacology 12: 1049–1058.Google Scholar
  78. Gordon, R., Spector, S., Sjoerdsma, A., and Udenfriend, S., 1966, Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold, J. Pharmacol. Exp. Ther. 153: 440–447.Google Scholar
  79. Hamburg, D A, Hamburg, B. A., and Barchas, J. D., 1975, Anger and depression in perspective of behavioral biology, in “Emotions: Their Parameter and Measurement” (L. Levi, ed.), pp. 235–278, Raven Press, New York.Google Scholar
  80. Hauger-Klevene, J. H., and Moyans, M. B., 1973, ACTH-induced alterations in catecholamine metabolism in man, J. Clin. Endocrinol. Metab. 36: 679–683.Google Scholar
  81. Hendley, E. D., Moisset, B., and Welch, B. C., 1973, Catecholamine uptake in cerebral cortex: Adaptive change induced by fighting, Science 180: 1050–1052.Google Scholar
  82. Hillarp, N. A., Fuxe, K., and Dahlstrom, A., 1966, Adrenergic mechanisms in the nervous system. Demonstration and mapping of central neurons containing dopamine, noradrenaline and 5-hydroxytryptamine and their reactions to psychopharmaca, Pharmacol. Rev. 18: 727–742.Google Scholar
  83. Hingtgen, J. N., Smith, J. E., Shea, P. A., Aprison, M. H., and Gaff, T. M., 1976, Cholinergic changes during conditioned suppression in rats, Science 193: 332–334.Google Scholar
  84. Hudgens, R., Morrison, J., and Barchha, R., 1967, Life events and onset of primary effective disorders, Arch. Gen. Pstichiat. 16: 134–145.Google Scholar
  85. Huszti, Z., and Kenessey, A, 1976, 3H-tyrosine incorporation into proteins and catecholamines in immobilized rats, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ and I. J. Kopin, eds.), pp. 377–386, Pergamon, Oxford.Google Scholar
  86. Huttenen, M. 0., 1971, Persistent alteration of turnover of brain noradrenaline in the offspring of rats subjected to stress during pregnancy, Nature 230: 53–55.Google Scholar
  87. Ingenito, A. J., and Bonnycastle, 1967, The effect of exposure to heat and cold upon rat brain catecholamine and 5-hydroxytryptamine levels, Can. J. Physiol. Pharm. 45: 733–743.Google Scholar
  88. Ishii, Y., Homma, M., and Yhoshigawa, A., 1975, Effect of a dopamine-beta-hydroxylase inhibitor on tissue catecholamine levels in spontaneously hypertensive rats subjected to immobilization—cold stress, Neuropharmacology 14: 155–157.Google Scholar
  89. Iversen, L. L., and Glowinski, J., 1966, Regional studies of catecholamines in the rat brain II, J. Neurochem. 13: 671–682.Google Scholar
  90. Javoy, F., Thierry, A. M., Kety, S. S., and Glowinski, J., 1968, The effect of amphetamine on the turnover of brain norepinephrine in normal and stressed rats, Commun. Behay. Biol. IA:43–48.Google Scholar
  91. Javoy, F., Agid, Y., Bouvet, D., and Glowinski, J., 1974, Changes in neostriatal DA metabolism after carbachol or atropine microinjections into the substantia nigra, Brain Res. 68: 253–260.Google Scholar
  92. Jones, F. D., Maas, J. W., Kekirmenjian, H., and Fawcett, J., 1973, Urinary catecholamine metabolites during behavioral changes in a patient with manic–depressive cycles, Science 179: 300–302.Google Scholar
  93. Karczmar, A. G., Scudder, C. L, and Richardson, D. L., 1973, Interdisciplinary approach to the study of behavior in related mice types, in “Chemical Approaches to Brain Function” (S. Ehrenpreis, and I. J. Kopin, eds.), pp. 160–244, Academic Press, New York.Google Scholar
  94. Kato, L., Gozsy, B., Roy, P. B., and Groh, V., 1967, Histamine, serotonin, epinephrine and norepinephrine in the rat brain following convulsions, Int. J. Neuropsychiatry 3: 46.Google Scholar
  95. Keim, K. L., and Sigg, E. B., 1976, Physiological and biochemical concomitants of restraint stress in rats, Pharmacol. Biochem. Behay. 4: 289–297.Google Scholar
  96. Kenessey, A., and Huszti, Z., 1976, The effect of monoamine oxidase inhibitors on the synthesis and degradation of catecholamines in immobilized rats, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ and I. J. Kopin, eds.), pp. 331–340, Pergamon Press, Oxford.Google Scholar
  97. Kessler, S., Ciaranello, R. D., Shire, J. G. M., and Barchas, J. D., 1972, Genetic variation in activity of enzymes involved in synthesis of catecholamines, Proc. Natl. Acad. Sci. 69: 2448–2450.Google Scholar
  98. Kety, S. S., 1972, Toward hypotheses for a biochemical component in the vulnerability to schizophrenia, Sem. Psychiat. 4: 233–238.Google Scholar
  99. Kety, S. S., 1959, Biochemical theories of schizophrenia. A two-part critical review of current theories and the evidence used to support them, Science 125: 1528–1532, 1590–1596Google Scholar
  100. Kety, S. S., and Schildkraut, J. J., 1967, Biogenic amines and emotion, Science 156: 21–30Google Scholar
  101. Klein, D. F., and Davis, J. M., 1969, “Diagnosis and Drug Treatment of Psychiatric Disorder,” Vol. 52, p. 138, Williams and Wilkins, Baltimore.Google Scholar
  102. Kobayashi, R. M., Palkovits, M., Kizer, J. S., Jacobowitz, D. M., and Kopin, I. J., 1976, Selective alterations of catecholamines and tyrosine hydroxylase activity in the hypothalamus following acute and chronic stress, in “Catecholamines and Stress” (E. Usdin, R. Kvetnansky, and I. J. Kopin, eds.), pp. 28–38, Pergamon Press, Oxford.Google Scholar
  103. Korf, J., 1976, Locus coeruleus, noradrenaline metabolism and stress, in “Catecholamines and Stress” (E. Usdin, R. Kvetnansky, and I. J. Kopin, eds.), pp. 105–110, Pergamon Press, Oxford.Google Scholar
  104. Korf, J., Aghajanian, G. K., and Roth, R. H., 1973a, Increased turnover of norepinephrine in the rat cerebral cortex during stress: Role of locus coeruleus, Neuropharmacology 12: 933–938.Google Scholar
  105. Korf, J., Aghajanian, G. K., and Roth, R. H., 1973b, Stimulation and destruction of the locus coeruleus: Opposite effects on 3-methoxy-4-hydroxyphenylglycol sulfate levels in the rat cerebral cortex, Eur. j. Pharmacol. 21: 305–310.Google Scholar
  106. Kujalovâ, V., Mikiska, A., and Hyska, P., 1976, Changes in catecholamine excretion in students during examination, in “Catecholamines and Stress” (E. Usdin, R. Kvetnansky, and I. J. Kopin, eds.), pp. 583–587, Pergamon Press, Oxford.Google Scholar
  107. Kvetnanskÿ, R., Mitro, A., Palkovits, M., Vigas, M., Albrecht, I., Torda, T., and Mikulaj, L., 1975, Effects of stress on catecholamines in individual hypothalamic nuclei and ACTH in rats. Symposium of the International Society of Psychoendocrinology, Visegrad.Google Scholar
  108. Kvetnansky, R., Mitro, A., Palkovits, M., Brownstein, M., Torda, T., Vigas, M., and Mikulaj, L., 1976, Catecholamines in individual hypothalamic nuclei in stress rats, in “Catecholamines and Stress” (E. Usdin, R. Kvetnansky, and I. J. Kopin, eds.), pp. 39–50, Pergamon Press, Oxford.Google Scholar
  109. Ladisich, W., 1974, Effect of stress upon serotonin metabolism in various regions of the rat brain, Arzheim Forsch 24: 1025–1027.Google Scholar
  110. Langos, J., Kvetnansky, R., Blazicek, P., Novotny, J., Vencel, P., Burdiga, A., and Mikulaj, L., 1976, Plasma renin and dopamine-ß-hydroxylase activity and catecholamine excretion in man during stress, in “Catecholamines and Stress” (E. Usdin, R. Kvetnansky, and I. J. Kopin, eds.), pp. 567–573, Pergamon Press, Oxford.Google Scholar
  111. Lee, C. H., Morita, A., Saito, H., and Takagi, K., 1973, Changes in catecholamine levels of mouse brain during oscillation-stress, Chem. Pharm. Bull. (Tokyo) 21: 2768–2770.Google Scholar
  112. Leff, M. J., Roatch, J. F., and Bunney, W. E., 1970, Environmental factors preceding the onset of severe depressions, Psychiatry 33: 298–311.Google Scholar
  113. Levi, L., 1967, “Emotional Stress,” Karger, New York.Google Scholar
  114. Levi, L., 1975, “Emotions: ”Their Parameters and Measurement,“ Raven Press, New York. Levine, S., 1972, ”Hormones and Behavior,“ Academic Press, New York.Google Scholar
  115. Levine, S., and Brush, F. R., 1967, Adrenocortical activity and avoidance learning as a function of time after avoidance training, Physiol. Behay. 2: 385–388.Google Scholar
  116. Loizou, L. A., 1969, Projection of the nucleus locus coeruleus in the albino rats, Brain Res. 15: 563–567.Google Scholar
  117. Maas, J. W., and Mednieks, M., 1971, Hydrocortisone effected increase of norepinephrine uptake by brain slices, Science 171: 178–179.Google Scholar
  118. Maas, J. W., Dekirmenjian, H., and Jones, F., 1973, The identification of depressed patients who have a disorder of NE metabolism and/or disposition, in “Frontiers in Catecholamine Research,” (E. Usdin, and S. Snyder, eds.), pp. 1091–1096, Pergamon Press, New York.Google Scholar
  119. Mandel, P., Ayad, G., Hermetet, J. C., and Ebel, A., 1974, Correlation between choline acetyltransferase activity and learning ability in different mice strains and their offspring, Brain Res. 72: 65–70.Google Scholar
  120. Mandel, P., Ebel, A., Mack, G., and Kempf, E., 1974, Neurochemical correlates of behaviour in inbred strains of mice, in “The Genetics of Behaviour,” (J. H. F. v. Abeelen, ed.), pp. 397–415, North-Holland, Amsterdam.Google Scholar
  121. Maynert, E. W., and Levi, R., 1964, Stress-induced release of brain norepinephrine and its inhibition by drugs, J. Pharmacol Exp. Ther. 143: 90–95.Google Scholar
  122. McBride, W. J., Hingtgen, J. N., and Aprison, M. H., 1976, Neurochemical correlates of behavior: Levels of amino acids in four areas of the brain of the rat during drug-induced behavioral excitation, Pharmacol. Biochem. Behay. 4: 53–57.Google Scholar
  123. McCann, S. M., Ajika, K., Fawcett, C. P., Hefco, E., Illner, P., Negro-Villar, A., Orias, R., Watson, J. T., and Krulich, L., 1973, Hypothalamic control of the adenohypophyseal response to stress by releasing and inhibitory neurohormones, in “Hormones, Metabolism and Stress” (S. Nemeth, ed.), pp. 67–77, Slovak Academy of Sciences, Bratislava.Google Scholar
  124. Mikas, Z., Kolesar, J., Petrovicova, L., Butykova, L., and Hagarova, Z., 1976, Physical load as a stress factor in patients with myocardial infarction, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 557–561, Pergamon Press, Oxford.Google Scholar
  125. Mikulaj, L., Mitro, A., Murgas, K., and Dobrakovova, M., 1973, Adrenocortical activity during and after stress with respect to adaptation, in “Hormones, Metabolism and Stress” (S. Nemeth, ed.), pp. 115–127, Slovak Academy of Sciences, Bratislava.Google Scholar
  126. Mitler, M. M., Cohen, H. B., Grettan, J., Dominic, J., Deguchi, T., Barchas, J. D., Dement, W. C., and Kessler, S., 1973, Sleep and serotonin in two strains of Mus musculus, Pharm. Biochem. Behay. 1: 507–510.Google Scholar
  127. Modigh, K., 1973, Effects of isolation and fighting in mice on the rate of synthesis of noradrenaline, dopamine, and 5-hydroxytryptamine in the brain, Psychopharmacologin 33: 1–17.Google Scholar
  128. Modigh, K., 1974, Effects of social stress on the turnover of brain catecholamines and 5hydroxytryptamine in mice, Acta Pharmacol. Toxicol. 34: 97–105.Google Scholar
  129. Modigh, K., 1976, Influence of social stress on brain catecholamine mechanisms, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 17–28, Pergamon Press, Oxford.Google Scholar
  130. Moisset, T. B., Hendley, E. D., Welch, B. L., 1975, Norepinephrine uptake by cerebral synaptosomes of mouse: Strain differences, Brain Res. 92: 157–164.Google Scholar
  131. Moore, K. E., and Lariviere, E. W., 1963, Effects of d-amphetamine and restraint on the content of norepinephrine and dopamine in rat brain, Biochem. Pharmacol. 12:1283-1288.Google Scholar
  132. Moore, K. E., and Lariviere, E. W., 1964, Effects of stress and d-amphetamine on rat brain catecholamines, Biochem. Pharmacol. 13: 1098–1100.Google Scholar
  133. Morgan, W. W., Rudeen, P. K., and Pfeil, K. A., 1975, Effect of immobilization stress on serotonin content and turnover in regions of the rat brain, Life Sci 17: 143–150Google Scholar
  134. Morrison, J., Hudgens, R., and Barchha, R., 1968, Life events and psychiatric illness, Br. J. Psychiat. 114: 423–432.Google Scholar
  135. Murphy, D. L., and Redmond, D. E., Jr., 1975, The catecholamines: Possible role in affect, mood, and emotional behavior in man and animals, in “Catecholamines and Behavior” (A. J. Friedhoff, ed.), pp. 73–117, Plenum Press, New York.Google Scholar
  136. Nemeth, S., 1973, “Hormones, Metabolism and Stress: Recent Progress and Perspectives,” Slovak Academy of Sciences, Bratislava.Google Scholar
  137. Nielson, H. C., and Fleming, R. M., 1968, Effect of electroconvulsive shock and prior stress on brain amine levels, Exp. Neurol. 20–21.Google Scholar
  138. Nishikawa, I., Kajiwara, Y., Kono, Y., Sano, T., Nagasaki, N., Tanaka, M., and Noda, Y., 1974, Isolation-induced general behavioral changes and brain monoamine levels in rat, Kurume Med. J. 21: 117–121.Google Scholar
  139. Nistri, A., Bartolini, A., Deffenu, G., and Pepeu, G., 1972, Investigations into the release of acetylcholine from the cerebral cortex of the cat: Effects of amphetamine, of scopolamine and of septal lesions, Neuropharmacology 11: 665–674.Google Scholar
  140. Oliverio, A., 1967, Contrasting effects of scopolamine on mice trained simultaneously with two different schedules of avoidance conditioning, Psychopharmacologia 11: 39–51.Google Scholar
  141. Oliverio, A., 1974, Genetic factors in the control of drug effects on the behaviour of mice, in “The Genetics of Behavior” U. H. F. v. Abeelen, ed.), pp. 375–395, North-Holland, Amsterdam.Google Scholar
  142. Oliverio, A., Eleftheriou, B. E., and Bailey, D. W., 1973, Exploratory activity: Genetic analysis of its modification by scopolamine and amphetamine, Physiol. Behay. 10: 893–899Google Scholar
  143. Otto, U., and Paalzow, L., 1975, Effect of stress on the pharmacokinetics of sodium salicylate and quinidine sulphate in rats, Acta Pharmacol. Toxicol. 36: 415–426.Google Scholar
  144. Palkovits, M., Brownstein, M., Kizer, J. S., Saavedra, J. M., and Kopin, I. J., 1976, Effect of stress on serotonin and tryptophan hydroxylase activity of brain nuclei, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 51–59, Pergamon Press, Oxford.Google Scholar
  145. Paré, W. P., and Livingston, A., 1970, Brain norepinephrine and stomach ulcers in rats exposed to chronic conflict, Physiol. Behay. 5: 215–220.Google Scholar
  146. Paré, W. P., and Temple, L. J., 1974, Food deprivation, shock stress and stomach lesions in the rat, Physiol. Behay. 11: 371–375.Google Scholar
  147. Paulsen, E. C., Hess, S. M., 1963, The rate rate of synthesis of catecholamines following depletion in guinea pig brain and heart, J. Neurochem.10: 453.Google Scholar
  148. Paykel, E., Myers, J., and Dienelt, M., 1970, Life events and depression, Arch. Gen. Psychiat. 21: 753–760.Google Scholar
  149. Pepeu, G., and Bartolini, A., 1968, Effect of psychoactive drugs on the output of acetylcholine from the cerebral cortex of the cat, Eur. J. Pharmacol. 4: 254–263.Google Scholar
  150. Post, R. M., and Goodwin, F. K., 1973, Simulated behavior states: An approach to specificity in psychobiological research, Biol. Psychiat. 7: 237–254.Google Scholar
  151. Prange, A. Z., Lara, P. P., Wilson, I. C., Alltop, L. B., and Breese, G. R., 1972, Effects of thyortropin-releasing hormone in depression, Lancet Nov. 11: 999–1002.Google Scholar
  152. Pryor, G. T., Peache, S., and Scott, M. K., 1972, The effect of repeated electroconvulsive shock on avoidance conditioning and brain monoamine oxidase activity, Physiol. Behay. 9: 623–628.Google Scholar
  153. Ramey, E. R., Goldstein, M. S., and Levine, R., 1971, Action of norepinephrine and adrenal cortical steroids on blood pressure and work performance of adrenalectomized dogs, Am. J. Physiol. 165: 450–455.Google Scholar
  154. Ray, O. S., and Barrett, R. J., 1975, Behavioral, pharmacological and biochemical analysis of genetic differences in rats, Behay. Biol. 15: 391–417.Google Scholar
  155. Rech, R. H., Tilson, H. A., and Marquis, W. J., 1975, Adaptive changes in behavior after repeated administration of various psychoactive drugs, in “Neurobiological Mechanisms of Adaptation and Behavior” (A. J. Mandell, ed.), pp. 163–286, Raven Press, New York.Google Scholar
  156. Richardson, J. S., 1974, Basic concepts of psychopharmacological research as applied to the psychopharmacological analysis of the amygdala, Acta Neurobiol. Exp. 34: 543–562.Google Scholar
  157. Riege, W. H., and Morimoto, H., 1970, Effects of chronic stress and differential environments upon brain weights and biogenic amine levels in rats, J. Comp. Physiol. Psychol. 71: 396–404.Google Scholar
  158. Rose, S.P.R., 1973, What do you mean: The cause of schizophrenia, in “Biochemistry and Mental Illness” (L. L. Iversen, S.P.R. Rose, and B. Pearse, eds.), The Biochemical Society, London.Google Scholar
  159. Rosecrans, J. A., 1969, Brain amine changes in stressed and normal rats pretreated with various drugs, Arch. Int. Pharmacodyn. 180: 460–470.Google Scholar
  160. Ross, S. B., Wetterberg, L., and Myrhed, M., 1973, Genetic control of plasma dopamine-ßhydroxylase, Life Sci. 12: 529–532.Google Scholar
  161. Sachar, E. J., and Coppen, A. J., 1975, Biological aspects of affective psychoses, Biol. Brain Dysfunction 3: 215–245.Google Scholar
  162. Sachar, E. J., Hellman, L., Fukushima, D., and Gallagher, T. F., 1970, Cortisol production in depressive illness, Arch. Gen. Psychiat. 23: 289.Google Scholar
  163. Saito, H., Morita, A., Miyazaki, I., and Takagi, K., 1976, Comparison of the effects of various stresses on biogenic amines in the central nervous system and animal symptoms, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 95–103, Pergamon Press, Oxford.Google Scholar
  164. Scapagnini, U., Annunziato, L., and Preziosi, P., 1973, Role of brain norepinephrine in stress regulation, in “Hormones, Metabolism and Stress: Recent Progress and Perspectives” (S. Nemeth, ed.), pp. 25–36, Slovak Academy of Sciences, Bratislava.Google Scholar
  165. Schildkraut, J. J., 1965, The catecholamine hypothesis of affective disorders—A review of supporting evidence, Am. J. Psychiat. 122: 509–522.Google Scholar
  166. Schildkraut, J. J., 1973, Neuropharmacology of the affective disorders in “Annual Review of Pharmacology” (H. W. Elliot, R. Okun, and R. George, eds.), Vol. 13, 427–455, G. Banta and Co., England.Google Scholar
  167. Segal, D. S., 1975, Behavioral and neurochemical correlates of repeated d-amphetamine administration, in “Neurobiological Mechanisms of Adaptation and Behavior” (A. J. Mandell, ed.), pp. 247–262, Raven Press, New York.Google Scholar
  168. Segal, D. S., Knapp, S., Kuczenski, R. T., and Mandell, A. J., 1973, The effects of environmental isolation on behavior and regional rat brain tyrosine hydroxylase and tryptophan hydroxylase activity, Behar). Biol. 8: 47–53.Google Scholar
  169. Seligman, M.E.P., 1974, Depression and learned helplessness, in “The psychology of depression: Contemporary theory and research” (R. J. Freedman and M. M. Katz, eds.), Winston Wiley, New York.Google Scholar
  170. Seligman, M.E.P., 1975, “Helplessness: On Depression, Development and Death,” W. H. Freeman, San FranciscoGoogle Scholar
  171. Seligman, M.E.P., Maier, S. F., and Solomon, R. L., 1971, Unpredictable and uncontrollable aversive events, in “Aversive Conditioning and Learning” (F. R. Brush, ed.), pp. 347–400, Academic Press, New York.Google Scholar
  172. Seligman, M.E.P., Klein, D. C., and Miller, W. R., 1974, Depression, in “Handbook of Behavior Therapy” (H. Leitenberg, ed.), Appleton-Century-Crofts, New YorkGoogle Scholar
  173. Selye, H., 1952, “The Story of the Adaptation Syndrome,” Acta Inc., Montreal. Siegal, S., 1975, Conditioning insulin effects, J. Comp. Physiol. Psychol. 89: 189–199.Google Scholar
  174. Slater, E., and Roth, M., 1969, “Mayer Gross Clinical Psychiatry,” Williams and Wilkens, Baltimore.Google Scholar
  175. Snyder, S. H., 1974, Catecholamines as mediators of drug effects in schizophrenia, in “The Neurosciences: Third Study Program” (F. O. Schmitt and F. G. Worden, eds.), pp. 721–732, MIT Press, Cambridge.Google Scholar
  176. Soderberg, U., 1967, Neurophysiological aspects of stress, in “Emotional Stress” (L. Levi, ed.), Karger, New York.Google Scholar
  177. Stadler, H., Lloyd, K. G., and Bartholini, G., 1974, Dopaminergic inhibition of striatal cholinergic neurons: Synergistic blocking action of y-butyrolactone on neuroleptic drugs, Arch. Pharmacol. 283: 129–134.Google Scholar
  178. Stolk, J. M., Conner, R. L., and Barchas, J. D., 1974a, Social environment and brain biogenic amine metabolism in rats, J. Comp. Physiol. Psychol. 87: 203–207.Google Scholar
  179. Stolk, J. M., Conner, R. L., Levine, S., and Barchas, J. D., 1974b, Brain norepinephrine metabolism and shock induced fighting behavior in rats: Differential effects of shock and fighting on the neurochemical response to a common footshock stimulus, J. Pharm. Exp. Ther. 190: 193–209.Google Scholar
  180. Stone, E. A., 1971, Hypothalamic norepinephrine after acute stress, Brain Res. 35: 260–263Google Scholar
  181. Stone, E. A., 1973, Adrenergic activity in rat hypothalamus following extreme muscular exertion, Am. J. Physiol. 224: 165–169.Google Scholar
  182. Stone, E. A., 1975a, Stress and catecholamines, in “Catecholamines and Behavior, Vol. II” (A. J. Friedhoff, ed.), pp. 31–72, Plenum Press, New York.Google Scholar
  183. Stone, E. A., 19756, Effect of stress on sulfated glycol metabolites of brain norepinephrine, Life Sci. 16: 1725–1730.Google Scholar
  184. Suits, E., and Isaacson, R. L., The effects of scopolamine hydrobromide on the one-way and two-way avoidance learning in rats, Int. J. Neuropharmacol. 7: 441–446.Google Scholar
  185. Swonger, A. K., and Rech, R. H., 1972, Serotonergic and cholinergic involvement in habituation of activity and spontaneous alternation of rats in a Y-maze, J. Comp. Physiol. Psychol. 81: 509–522.Google Scholar
  186. Telegdy, G., and Vermes, I., 1976, Changes induced by stress in the activity of the serotoninergic system in limbic brain structures, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 145–156, Pergamon Press, Oxford.Google Scholar
  187. Thierry, A. M., 1973, Effects of stress on the metabolism of serotonin and norepinephrine in the central nervous system of the rat, in “Hormones, Metabolism and Stress: Recent Progress and Perspectives” (S. Nemeth, ed.), pp. 37–53, Slovak Academy of Sciences, Bratislava.Google Scholar
  188. Thierry, A. M., Fekete, M., and Glowinski, J., 1968a, Effects of stress on the metabolism of noradrenaline, dopamine and serotonin (5-HT) in the central nervous system of the rat, II. Modifications of serotonin metabolism, Eur. J. Pharmacol. 4: 384–389.Google Scholar
  189. Thierry, A. M., Javoy, J., Glowinski, J., and Kety, S. S., 1968b, Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. I. Modifications of norepinephrine turnover, J. Pharmacol. Exp. Ther. 163: 163–171.Google Scholar
  190. Thierry, A. M., Blanc, G., and Glowinski, J., 1970, Preferential utilization of newly synthe- sized norepinephrine in the brain stem of stressed rats, Eur. J. Pharmcol. 10: 139.Google Scholar
  191. Thierry, A. M., Blanc, G., and Glowinski, J., 1971, Effect of stress on the disposition of catecholamines localized in various intraneuronal storage forms in the brain stem of the rat, J. Neurochem. 18: 449–461.Google Scholar
  192. Thoa, N. B., Tizabi, Y., and Jacobowitz, D. M., 1976, The effect of prolonged isolation on the catecholamine and serotonin concentration of discrete areas of the rat brain, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 61–67, Pergamon Press, Oxford.Google Scholar
  193. Thoenen, H., 1970, Induction of tyrosine hydroxylase in peripheral and central adrenergic neurons by cold exposure, Nature 228: 861–862.Google Scholar
  194. Thomson, K., and Hendrie, H., 1972, Environmental stress in primary depressive illness, Arch. Gen. Psychiat. 26: 130–132.Google Scholar
  195. Tunnicliff, G., Wimer, C. C., and Wimer, R. E., 1973, Relationships between neurotransmit- ter metabolism and behaviour in seven inbred strains of mice, Brain Res. 61: 428–434Google Scholar
  196. Ungerstedt, U., 1971, Sterotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand. 367: 1–48.Google Scholar
  197. Van Loon, G. R., 1976, Brain dopamine hydroxylase activity: Response to stress, tyrosine hydroxylase inhibition, hypophysectomy and ACTH administration, in “Catecholamines and Stress” (E. Usdin, R. Kvetnanskÿ, and I. J. Kopin, eds.), pp. 77–87, Pergamon Press, Oxford.Google Scholar
  198. Van Praag, H. M., and Korf, J., 1973, Monoamine metabolism in depression: ClinicalGoogle Scholar
  199. application of the probenicid test, in “Serotonin and Behaviour” U. Barchas and E. Usdin, eds.), pp. 457–468, Academic Press, New York.Google Scholar
  200. Vernikos-Danellis, J., 1964, Estimation of corticotropin-releasing activity of rat hypothalamus and neurohypophysis before and after stress, Endocrinology 75: 514–520.Google Scholar
  201. Vertes, R. P. and Miller, N. E., 1976, Brain stem neurons that fire selectively to a conditioned stimulus for shock, Brain Res. 103: 229–242.Google Scholar
  202. Wallach, M. B., 1974, Drug-induced stereotyped behavior: Similarities and differences, in “Neuropsychopharmacology of Monoamines and Their Regulatory Enzymes” (E. Usdin, ed.), pp. 241–260, Raven Press, New York.Google Scholar
  203. Weiss, J. M., 1971a, Effects of coping behavior in different warning signal conditions on stress pathology in rats, J. Comp. Physiol. Psychol. 77: 1–13.Google Scholar
  204. Weiss, J. M., 197lb, Effects of punishing the coping response (conflict) on stress pathology in rats, J. Comp. Physiol. Psychol. 77: 14–21.Google Scholar
  205. Weiss, J. M., 1971c, Effects of coping behavior with and without a feedback signal on stress pathology in rats, J. Comp. Physiol. Psychol. 77: 22–30.Google Scholar
  206. Weiss, J. M., and Glazer, H. I., 1975, Effects of acute exposure to stressors on subsequent avoidance—escape behavior, Psychosom. Med. 37: 499–521.Google Scholar
  207. Weiss, J. M., Stone, E. A., and Harrell, N., 1970, Coping behavior and brain norepinephrine level in rats, J. Comp. Physiol. Psychol. 72: 153–160.Google Scholar
  208. Weiss, J. M., Pohorecky, L. A., Dorros, K., Williams, S., Emmel, D., Whittlesey, M., and Case, E., 1973, Coping behavior and brain norepinephrine turnover. Presented at the Eastern Psychological Association, Washington, D.C., May, 1973.Google Scholar
  209. Weiss, J. M., Glazer, H. 1., and Pohorecky, L. A., 1975a, Coping behaviour and neurochemical changes: An alternative explanation for the original “learned helplessness” experiments, in “Animal Models in Human Psychobiology” (G. Serban and A. Kling, eds.), Plenum Press, New York.Google Scholar
  210. Weiss, J. M., Glazer, H. I., Pohorecky, L. A., Brick, J., Miller, N. E., 1975b, Effects of chronic exposure to stressors on avoidance—escape behavior and on brain norepinephrine, Psychosom. Med. 37: 522–534.Google Scholar
  211. Welch, B. L., and Welch, A. S., 1967, Stimulus-dependent antagonism of the a-methyltyrosine induced lowering of brain catecholamines by (+) amphetamine in intact mice, J. Pharm. Pharmacol. 19: 841–843.Google Scholar
  212. Welch, A. S., and Welch, B. L., 1968a, Failure of natural stimuli to accelerate brain catecholamine depletion after biosynthesis inhibition with a-methyltyrosine, Brain Res. 9: 402–405.Google Scholar
  213. Welch, A. S., and Welch, B. L., 1968b, Effect of stress and parachlorophenylalamine upon brain serotonin, 5-hydroxyindoleactic acid and catecholamines in grouped and isolated mice, Biochem. Pharmacol. 17: 699.Google Scholar
  214. Welch, B. L., and Welch, A. S., 1968c, Differential activation by restraint stress of a mechanism to conserve brain catecholamines and serotonin in mice differing in excitability, Nature (London) 218: 575–577.Google Scholar
  215. Welch, B. L., and Welch, A. S., 1969, Aggression and the biogenic amine neurohumors, in “Biology of Aggressive Behavior” (S. Garattini and E. B. Sigg, eds.), Excerpta Medica Foundation, Amsterdam.Google Scholar
  216. Welch, B. L., and Welch, A. S., 1970, Control of brain catecholamines and serotonin during acute stress and after d-amphetamine by natural inhibition of monoamine oxidase: An hypothesis, in “Amphetamines and Related Compounds” (E. Costa and S. Garattini, eds.), pp. 415–445, Raven Press, New York.Google Scholar
  217. Welch, B. L., Hendley, E. D., and Turek, I., 1974, Norepinephrine uptake into cerebral cortical synaptosomes after one fight or electroconvulsive shock, Science 183: 220–221Google Scholar
  218. Wimer, R. E., Norman, R., and Eleftheriou, B. E., 1974, Serotonin levels in hippocampus: Striking variations associated with mouse strain and treatment, Brain Res. 63: 397–401.Google Scholar
  219. Winokur, G., 1973, The types of affective disorders, J. Nero. Ment. Dis. 156: 82–96Google Scholar
  220. Williams, J. M., Hamilton, L. W., and Carlton, P. L., 1974, Pharmacological and anatomical dissociation of two types of habituation, J. Comp. Physiol. Psychol. 87: 724–732.Google Scholar
  221. Wilson, I. C., Prange, A. J., McClane, T. K., Rabon, A. M., Lipton, M. A., 1970, Thyroid hormone enhancement of imipramine in nonretarded depression, N. Engl. J. Med. 282: 1063–1067.Google Scholar
  222. Zajaczkowska, M. N., 1975, Acetylcholine content in the central and peripheral nervous system and its synthesis in the rat brain during stress and post-stress exhaustion, Acta Physiol. Pol. 26: 493–497.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Hymie Anisman
    • 1
  1. 1.Department of PsychologyCarleton UniversityOttawaCanada

Personalised recommendations