Optimal Approximation in Automated Cartography

  • Wigand Weber
Part of the The IBM Research Symposia Series book series (IRSS)


For several years, attempts are being made in many countries of the world to apply electronic data processing techniques in the production and updating of maps. Therein, cartographic generalization still is a vital problem.

Generalization in cartography is the process of transforming the contents of a map into a form appropriate for a map of smaller scale; it consists of several partial processes (as selection, geometric combination, qualitative summarization, simplification and displacement of map objects) which are interdependent in a non-hierarchic way.

It is shown that cartographic generalization is a problem of optimal approximation and that it may be described by a model of mathematical optimization. The basis of such a model is the calculation or semantic information content of the individual map objects in a way corresponding to the thesises of information theory and to the way people (most probably) read maps. Prediction techniques play an essential part in this respect.

The generalization model is subsequently used as a scheme for the classification and judgement of the most important contemporary partial solutions of automated map generalization.

Concluding, three other problems in automated cartography are described which are solved by using methods of approximation theory. These are the reduction of the quantity of digital cartographic data to a minimal amount allowing the ‘exact’ reconstruction of a line, the Helrnert Transformation (which is a conformal transformation — optimal in the sense of the least-squares method) for the minimization of distortions in geometric data digitized from a distorted map sheet, and finally the calculation of splines for the reconstruction of lines from a limited number of given points for output on flatbed plotters.


Information Content Optimal Approximation Combination Variable Mathematical Optimization Partial Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Christ, F.; Schmidt, E.; Uhrig, H.: Untersuchung der Generalisierung der topo-graphischen Ubersichtskarte 1: 200 000 auf mogliche Gesetzmafiigkeiten. — Nachrichten aus dem Karten-und Vermessungswesen, Series I, Nr. 51, Frankfurt a. M. 1972.Google Scholar
  2. [2]
    Steward, H. J.: Cartographic generalization, some concepts and explanation. — Cartographica, supplement No. 1 to the Canadian Cartographer, Vol. 11, 1974.Google Scholar
  3. [3]
    Hake, G.: Der Informationsgehalt der Karte — Merkmale und Mafie. — In: Grund-satzfragen der Kartographie, Osterr. Geograph. Gesellschaft, Wien 1970, pp. 119–131.Google Scholar
  4. [4]
    Gottschalk, H.-J.: Versuche zur Definition des Informationsgehaltes gekriimmter kartographischer Linienelemente und zur Generalisierung. — Deutsche Geoda-tische Kommission bei der Bayer. Akademie der Wissenschaften, Series B, No. 189, Frankfurt a. M. 1971.Google Scholar
  5. [5]
    Lauer, S.: Anwendung der skalaren Pradiktion auf das Problem des digitalen Gelandemodells. — Nachrichten aus dem Karten-und Vermessungswesen, Series I, No. 51, Frankfurt a. M. 1972.Google Scholar
  6. [6]
    Bollmann, J.: Kartographische Zeichenverarbeitung — Grundlagen und Verfahren zur Quantifizierung syntaktischer Zeicheninformation. — Diplomarbeit, Freie Universitat Berlin, 1976.Google Scholar
  7. [7]
    Mesenburg, K. P.: Ein Beitrag zur Anwendung der Faktorenanalyse auf Genera-lisierungsprobleme topographischer Karten. — Dissertation, Universitat Bonn, 1973.Google Scholar
  8. [8]
    Monmonier, M. S.: Analogs between class-interval selection and location — allocation models. — The Canadian Cartographer, Vol. 10, 1973, pp. 123–131.Google Scholar
  9. [9]
    Weber, W.: Datenstruktur eines digitalen Gelandemodells. — CAD-Bericht KFK-CAD 11 ‘Das digitale Gelandemodell’, Gesellschaft fur Kernforschung, Karlsruhe, September 1976.Google Scholar
  10. [10]
    Kadmon, N.: Automated selection of settlements in map generalization. — Car-togr. Journal, 1972, pp. 93–98.Google Scholar
  11. [11]
    Hardy, R. L.: Multiquadratic equations of topography and other irregular surfaces.–Journal of Geophys. Res., Vol. 76, No. 8, 1971, pp. 1905–1915.CrossRefGoogle Scholar
  12. [12]
    Gottschalk, H.-J.: Die Generalisierung von Isolinien als Ergebnis der Generalisierung von Flachen. — 2teitschrift fur Vermessungswesen, 1972, pp. 489–494.Google Scholar
  13. [13]
    Kraus, K.: Interpolation nach kleinsten Quadraten in der Photogrammetrie. — Bildmessung und Luftbildwesen 40, 1972, pp. 3–8.Google Scholar
  14. [14]
    Koch, K. R.: Hoheninterpolation mittels gleitender Schragebenen und Pradiktion. — Vermessung, Photogrammetrie, Kulturtechnik, Mitteilungsblatt 71. ann. set 1973, pp. 229–232.Google Scholar
  15. [15]
    Gottschalk, H.-J.: Ein Rechnerprogramm zur Berechnung von Flachen aus fla-chenartig strukturierten Punktmengen mit Hilfe der Bearbeitung von Binarbil-dern. — Deutsche Geodatische Kommission, Series B, No. 205, Frankfurt a. M.Google Scholar
  16. [16]
    Gottschalk, H.-J.: Ein Modell zur automatischen Durchfiihrung der Verdrangung bei der Generalisierung. — Nachrichten aus dem Karten-und Vermessungswesen, Series I, No. 58, Frankfurt a. M. 1972.Google Scholar
  17. [17]
    Schittenhelm, R.: The problem of displacement in cartographic generalization. — Attempting a computer-assisted solution. — Paper VIII1 International Cartographic Conference, Moscou 1976.Google Scholar
  18. [18]
    Tost, R.: Mathematische Methoden zur Datenreduktion digitalisierter Linien. — Nachrichten aus dem Karten-und Vermessungswesen, Series 1, No. 56, Frankfort a. M. 1972.Google Scholar
  19. [19]
    Pfaltz, J. L.: Pattern recognition VI — MANS, a map analysis system. — University of Maryland, Techn. Report TR-67–42, 1967.Google Scholar
  20. [20]
    Freeman, J.: The modelling of spatial relations. — University of Maryland, Techn. Report TR-281, 1973.Google Scholar
  21. [21]
    Kádár, I; Karsay, F.; Lakos, Ágfalvi, M.: A practical method for estimation of map information content. — In: Automation the new trend in cartography, Final report on the ICA Commission III (Automation in cartography)scientific working session, August 1973 in Budapest, Budapest 1974.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Wigand Weber
    • 1
  1. 1.Institut für Angewandte GeodäsieFrankfurt a. M.Germany

Personalised recommendations