n-Widths and Optimal Interpolation of Time- and Band-Limited Functions

  • Avraham A. Melkman
Part of the The IBM Research Symposia Series book series (IRSS)


Let L 2(R) denote the space of complex valued square integrable functions on the real line.


Real Line Optimal Interpolation Fredholm Determinant Optimal Recovery Optimal Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. A. Karlovitz, Remarks on variational characterization of eigenvalues and n-width problems, J. Math. Anal. Appl. 53 (1976), 99–110.CrossRefGoogle Scholar
  2. 2.
    H. J. Landau, The eigenvalue behavior of certain convolution equations, Trans. Am. Math. Soc. 115 (1965), 242–256.Google Scholar
  3. 3.
    H. J. Landau and H. 0. Pollak, Prolate spherical wave functions, Fourier analysis and uncertainty. II, Bell System Tech. J. 40 (1961), 65–84.CrossRefGoogle Scholar
  4. 4.
    H. J. Landau and H. 0. Pollak, Prolate spheroidal wave functions. Fourier analysis and uncertainty. Ill, Bell System Tech. J. 41 (1962), 1295–1336.CrossRefGoogle Scholar
  5. 5.
    G. G. Lorentz, Approximation of functions. Holt, Rinehart and Winston, 1966.Google Scholar
  6. 6.
    A. A. Melkman and C. A. Micchelli, On non-uniqueness of optimal subspaces for L n-width, IBM Research Report, RC 6113 (1976).Google Scholar
  7. 7.
    D. Slepian, On bandwidth, Proc. IEEE, 64 (1976), 292–300.CrossRefGoogle Scholar
  8. 8.
    D. Slepian and H. 0. Pollak, Prolate spheroidal wavefunctions, Fourier analysis and uncertainty, I, Bell System Tech. J. 40 (1961), 43–64.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Avraham A. Melkman
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations