Some Aspects of the Mathematics of Limulus

  • K. P. Hadeler
Part of the The IBM Research Symposia Series book series (IRSS)


The compound eyes of the horse-shoe crab exhibit one of the few nervous networks which are well understood, mainly because of its simple and repetitive structure. The theory of this network poses various mathematical questions such as existence and uniqueness of stationary solutions, stability problems and, at present of greatest interest, the existence of periodic solutions of differential equations with retarded argument.


Periodic Solution Retarded Argument Mach Band Phase Plane Method American East Coast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Browder,F.E., A further generalization of the Schauder fixed point theorem, Duke Math.J. 32, 575–578 (1965)CrossRefGoogle Scholar
  2. [2]
    Chow,S.-N., Existence of periodic solutions of autonomous functional differential equations, J.Diff. Eq. 15, 350–378 (1974)CrossRefGoogle Scholar
  3. [3]
    Coleman,B.D., and Renninger,G.H., Theory of delayed lateral inhibition in the compound eye of Limulus, Proceedings Nat.Acad.Sc. 71, 2887–2891 (1974)CrossRefGoogle Scholar
  4. [4]
    Coleman,B.D., and Renninger, G.H., Consequences of delayed lateral inhibition in the retina of Limulus I. Elementary theory of spatially uniform fields, J. Theor. Biol. 51, 243–265 (1975)CrossRefGoogle Scholar
  5. [5]
    Coleman,B.D., and Renninger,G.H., Consequences of delayed lateral inhibition in the retina of Limulus. II. Theory of spatially uniform fields, assuming the 4-point property, J. Theor. Biol. 51, 267–291 (1975)CrossRefGoogle Scholar
  6. [6]
    Coleman,B.D., and Renninger,G.H., Periodic solutions of certain nonlinear integral equations with a time-lag, SI AM J.Appl.Math. 31, 111–120 (1976)CrossRefGoogle Scholar
  7. [7]
    Coleman,B.D., and Renninger,G.H., Periodic solutions of a nonlinear functional equation describing neural action, Istituto Lombardo Acad.Sci.Lett.Rend.A, 109, 91–111 (1975)Google Scholar
  8. [8]
    Coleman,B.D., and Renninger,G.H., Theory of the response of the Limulus retina to periodic excitation, J.of Math.Biol. 3, 103–119 (1976)CrossRefGoogle Scholar
  9. [9]
    Dunkel,G., Single species model for population growth depending on past history in: Seminar on Differential euqations and dynamical systems, Lecture Notes in Mathematics Vol. 60, Berlin Springer 1968.Google Scholar
  10. [l0]
    Grafton,R.B., A periodicity theorem for autonomous functional differential equations, J.Diff.Equ. 6, 87–109 (1969)CrossRefGoogle Scholar
  11. [11]
    Hadeler,K.P., On the theory of lateral inhibition, Kyberneti k 14, 161–165 (1 974)Google Scholar
  12. [12]
    Hadeler, K. P., On the stability of the stationary state of a population growth equation with time-lag, J.Math. Biol. 3, 197–201 (1976)CrossRefGoogle Scholar
  13. [13]
    Hadeler,K. P., and Tomiuk,J., Periodic solutions ofdi fference-di fferenti al equations, Arch.Rat.Mech.Anal, to appear.Google Scholar
  14. [14]
    Halbach, K. und Burkhard,H. J., Sind einfache Zeitver-zogerungen die Ursachen fiir periodische Populations-schwankungen ? Oecologia (Berlin) 9, 215–222 (1972).CrossRefGoogle Scholar
  15. [15]
    Hutchi nson,G. E., Circular causal systems in ecology, Ann.N.Y. Acad.Sci. 50, 221–246 (1948)CrossRefGoogle Scholar
  16. [16]
    Hartl i ne,H. K., Studies on excitation and inhibition in the retina, Chapman and Hall, London (1974)Google Scholar
  17. [17]
    Jones,G.S., The existence of periodic solutions of f’(x)=-2f(x-l)(l+f(x)), J.Math.Anal.Appl. 5, 435–450 (1962).CrossRefGoogle Scholar
  18. [18]
    Kaplan,J.L. and Yorke,J.A., Existence and stability of periodic solutions of x’(t)=-f(x(t),x(t-l))5 in: Cesari Lamberto (ed.) Dynamical Systems I,II Providence (1974)Google Scholar
  19. [19]
    May,R., Stability and complexity in model ecosystems, Pop.Biol.6, Princeton Univ.Press (1974)Google Scholar
  20. [20]
    Morishita,I., and Yajima,A., Analysis and simulation of networks of mutually inhibiting neurons, Kyberneti V 11, 154–165 (1 972)Google Scholar
  21. [21]
    Nussbaum,R. D., Periodic solutions of some nonlinear autonomous functional differential equations, Annali di Matematica Ser.4, 51, 263–306 (1974)Google Scholar
  22. [22]
    Pesin,J.B., On the behavior of a strongly nonlinear differential equation with retarded argument. Differentsial 1 nye uravnenija 10, l025–l036 (1 974)Google Scholar
  23. [23]
    Rei chardt, W., and MacGi n i ti e,G., Zur Theorie der 1ateralen Inhibition, Kybernetik 1, 155–165 (1962)CrossRefGoogle Scholar
  24. [24]
    Varjú,D., Vergleich zweier Modelle fur laterale Inhibition, Kybernetik 1, 200–208 (1962)CrossRefGoogle Scholar
  25. [25]
    Walter,H., Habi 1 i tati onsschri ft, Saarbrticken 1971.Google Scholar
  26. [26]
    Walther,H.-0, Existence of a non-constant periodic solution of a nonlinear autonomous functional differential equation representing the growth of a single species population, J.Math.Biol. 1, 227–240 (1975)CrossRefGoogle Scholar
  27. 27.
    Walther,H.-0., On a transcendental equation in the stability analysis of a population growth model, J.of Math.Biol. 3, 187–195 (1976)Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • K. P. Hadeler
    • 1
  1. 1.Lehrstuhl BiomathematikUniv. Tübingen74 TübingenW.Germany

Personalised recommendations