Advertisement

Non-Ambient Temperature Microscopy

  • Robert Z. Muggli
  • Walter C. McCrone

Abstract

One of the authors has been quoted as saying that any industrial process can be duplicated under the microscope. To achieve this requires, among other things, wide ranges of controlled temperature, both below and above room temperature in the specimen area. Temperature itself should not be a problem, however, since objects from liquid helium temperatures (−268.6°C) to flame temperatures (about 4500°C) can be studied microscopically. Even high DC arc and spark temperatures are available but, especially with flames, arcs and sparks, temperature control and read-out become a problem.

Keywords

Platinum Resistance Thermometer Bismuth Telluride Cold Stage Additional Cool Equilibrium Melting Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schott, O., and S. Leisegang, Proceedings of the First European Regional Conference on Electron Microscopy, Stockholm, 20, (1956).Google Scholar
  2. 2.
    Anderson, K., and J.H. Lucas, Paper read at Electron Microscope Group Meeting of Institute of Physics (November 1964).Google Scholar
  3. 3.
    Valdre, U., Proceedings of the Third Regional Conference on Electron Microscopy, Prague, 61, (1964).Google Scholar
  4. 4.
    Rouze, S. R., and W. L. Grube, Proceedings of International Conference on Microscopy 1960, Chicago, edited by Walter C. McCrone.Google Scholar
  5. 5.
    Whelan, M.J., Proceedings of Fourth International Conference on Electron Microscopy, Berlin, 96 (1958).Google Scholar
  6. 6.
    Silcox, J., and M.J. Whelan, Structure and Properties of Thin Films, John Wiley and Sons, London, (1959).Google Scholar
  7. 7.
    Agar, A.W., and J.H. Lucas, Proceedings of Fifth International Conference on Electron Microscopy, Philadelphia, paper E-2 (1962).Google Scholar
  8. 8.
    McCrone, W.C. and S.M. O’Bradovic, Anal. Chem. 28, 1038 (1956).CrossRefGoogle Scholar
  9. 9.
    Nicholds, K.E. et al., Hymatic Cryogenic Symposium (November 1973).Google Scholar
  10. 10.
    Markussen, J., and W.C. McCrone, Microscope 14, 395–402 (1965).Google Scholar
  11. 11.
    McCrone, W.C., et al., Anal. Chem. 18, 578 (1946).Google Scholar
  12. 12.
    Jones, F.T., Microscope 16, 37 (1968).Google Scholar
  13. 13.
    Hartshorne, N.H., Microscope 23, 177–190 (1975).Google Scholar
  14. 14.
    Hartshorne, N.H., and A. Stuart, Crystals and the Polarizing Microscope, Arnold, London, (1970).Google Scholar
  15. 15.
    Teetsov, A., and W.C. McCrone, Microscope 15, 13–29 (1965).Google Scholar
  16. 16.
    McCrone, W.C., Fusion Methods in Chemical Microscopy, John Wiley and Sons, New York, NY, (1957).Google Scholar
  17. 17.
    Julian, Y., and W.C McCrone, Microscope 19, 225–234 (1971).Google Scholar
  18. 18.
    Charsley, E.L., and A.C.F. Kamp, Thermal Analysis, Vol. 1, Proceedings Third ICTA DAVOS (1971).Google Scholar
  19. 19.
    Kuhnert-Brandstãtter, M., Microscope 16, 257–265 (1968).Google Scholar
  20. 20.
    Gabler, F., and W. Wurz, Metall. 9, 819–823 (1959).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Robert Z. Muggli
  • Walter C. McCrone
    • 1
  1. 1.McCrone AssociatesChicagoUSA

Personalised recommendations