The goal in the design of a holographic microscope is to record and reconstruct a three-dimensional image of a microscopic object so as to preserve both amplitude and phase information. Using standard microscopic techniques where possible, the holographic microscope is a tool to be used by any scientist requiring this amplitude and phase information. This paper presents a discussion of state-of-the-art in holographic microscopy, including current techniques, basic principles of holography especially as they apply to holographic microscopy, and successful applications. The goal of this paper is to aid the reader in making a decision about the utility of holographic microscopy in a particular research situation.


Reference Wave Cheek Pouch Photographic Film Object Wave Conventional Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Gabor, Proc. Roy. Soc. (London), Ser. A, 197, 454 (1949).CrossRefGoogle Scholar
  2. 2.
    W.L Bragg, Nature, 149, 470 (1942).CrossRefGoogle Scholar
  3. 3.
    D. Gabor, Nature, 161, 777 (1948).CrossRefGoogle Scholar
  4. 4.
    E.N. Leith & J. Upatnieks, J. Opt Soc. Am., 52, 1123 (1962).CrossRefGoogle Scholar
  5. 5.
    E.N. Leith & J. Upatnieks, J. Opt. Soc. Am., 54, 1295 (1964).CrossRefGoogle Scholar
  6. 6.
    We postpone discussion of the recording medium properties to the next section. For now, assume some light sensitive medium is available to record intensity variations.Google Scholar
  7. 7.
    Eastman Kodak and Agfa Gavaert make the best photographic films for holography Consult the scientific applications division for advice.Google Scholar
  8. 8.
    Film manufacturers and suppliers can provide processing data. For other materials, consult the supplier.Google Scholar
  9. 9.
    E.N. Leith & J. Upatnieks, J. Opt. Soc. Am., 54, 1295 (1964).CrossRefGoogle Scholar
  10. 10.
    B.J. Thompson, J. Soc. Phot. Inst. Engr., 4, 7 (1965).Google Scholar
  11. 11.
    H.J. Caulfield, Opt. Comm., 3, 322 (July, 1971).CrossRefGoogle Scholar
  12. 12.
    R.W. Meier, J. Opt. Soc. Am., 56, 219 (1966).CrossRefGoogle Scholar
  13. 13.
    R.F. van Ligten, and H. Osterberg, Nature, 211, 282 (1966).CrossRefGoogle Scholar
  14. 14.
    L. Toth, and S.A. Collins, Appl. Phys. Letters, 13, 7 (1968).CrossRefGoogle Scholar
  15. 15.
    R.H. McFee, J. Opt. Soc. Am., 59, 474 (1969);Google Scholar
  16. 15a.
    R.H. McFee, J. Opt. Soc. Am., 59, 1540 (1969);Google Scholar
  17. 15a.
    R.H. McFee, Appl. Opt, 9, 1834 (1970).CrossRefGoogle Scholar
  18. 16.
    M.E. Cox, R.G. Buckles, and D. Whitlow, Appl. Opt t 10, 128 (1971).CrossRefGoogle Scholar
  19. 17.
    R.F. vanLigten, and H. Osterberg, Nature, 211, 282 (1966).CrossRefGoogle Scholar
  20. 18.
    M.B. Rhodes, Appl. Opt, 13, 2263 (1974).CrossRefGoogle Scholar
  21. 19.
    M. E. Cox, Proceedings of the SPIE, 52, 119 (1975).Google Scholar


  1. Born, M., and E. Wolf, Principles of Optics, Pergamon Press, (1969).Google Scholar
  2. Cathey, W.T., Optical Information Processing and Holography, Wiley (1974).Google Scholar
  3. Caulfield, H.J., and Sun Lu, The Applications of Holography, Wiley (1970).Google Scholar
  4. DeVelis, J.B., and G.O. Reynolds, Theory and Applications of Holography, Addison-Wesley (1967).Google Scholar
  5. Goodman, J.W., Introduction to Fourier Optics, McGraw-Hill (1968).Google Scholar
  6. Smith, H., Principles of Holography, Wiley (1969).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Mary E. Cox
    • 1
  1. 1.Department of Physics & AstronomyUniversity of Michigan-FlintFlintUSA

Personalised recommendations