On the Anatomical Substrate for Flavor

  • Ralph Norgren


Flavor contributes significantly to the control of feeding behavior and the pleasure associated with eating. It has long been recognized that flavor consists of far more than simple gustatory sensibility. Odor, texture, temperature, consistency and taste each contribute in varying degrees. The neural mechanisms underlying this amalgam of sensations, much less its influence over ingestion, have yet to be specified. Recent investigations of both the gustatory and olfactory systems, however, provide an anatomical basis for interaction between these two chemical senses. Additional evidence indicates that other, non-chemical, oral sensibilities (thermal and tactile) may converge on the same areas.


Lateral Hypothalamus Anatomical Substrate Accessory Olfactory Bulb Medial Lemniscus Dorsal Thalamus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALLEN, W. F. 1923. Origin and destination of the secondary visceral fibers in the guinea-pig. J. Comp. Neurol. 35: 275–310.CrossRefGoogle Scholar
  2. ANOKHIN, P. K., and SUDAKOV, K. V. 1966. Sensory mechanism of satiety. in Proceedings of the 7th International Congress of Nutr., Vol. 2. Friedr. Vieweg and Sohn, Hamburg.Google Scholar
  3. ASTROM, K. E. 1953. On the central course of afferent fibers in the trigeminal, facial, glossopharyngeal, and vagal nerves and their nuclei in the mouse. Acta Physiol. Scand. 29 (suppl. 106): 209–320.Google Scholar
  4. BECKER, E., and KISSILEFF, H. 1974. Inhibitory controls of feeding by ventromedial hypothalamus. Am. J. Physiol. 226: 383–396.PubMedGoogle Scholar
  5. BENJAMIN, R. M., and BURTON, H. 1968. Projection of taste nerve afferents to anterior opercular-insular cortex in squirrel monkey (Saimiri sciureus). Brain Res. 7: 221–231.PubMedCrossRefGoogle Scholar
  6. BLOMQUIST, A. J., and ANTEM, A. 1965. Localization of the terminals of the tongue afferents in the nucleus of the solitary tract. J. Comp. Neurol. 124: 127–130.CrossRefGoogle Scholar
  7. BROADWELL, R. D. 1975a. Olfactory relationships of the telencephalon and diencephalon in the rabbit. I. An autoradiographic study of the efferent connections of the main and accessory olfactory bulbs. J. Comp. Neurol. 163: 329–346.PubMedCrossRefGoogle Scholar
  8. BROADWELL, R. D. 1975b. Olfactory relationships of the telencephalon and diencephalon in the rabbit. H. An autoradiographic and horseradish peroxidase study of the efferent connections of the anterior olfactory nucleus. J. Comp. Neurol. 164: 389–410.PubMedCrossRefGoogle Scholar
  9. CAIN, D. P., and BINDRA, D. 1972. Responses of amygdala single units to odors in the rat. Exp. Neurol. 35: 98–110.PubMedCrossRefGoogle Scholar
  10. CAMPBELL, J. F., BINDRA, D., KREBS, H., AND FERENCHAK, R. P. 1969. Responses of single units of the hypothalamic ventromedial nucleus to environmental stimuli. Physiol. Behay. 4: 183–187.CrossRefGoogle Scholar
  11. VON ECONOMO, C. 1911. ‘Tiber dissoziierte Empfindungslähmung bei Ponstumoren und über die zentralen Bahnen des sensiblen Trigeminus. J. Psychiat. Neurol. 32: 107–138.Google Scholar
  12. EDINGER, L. 1908. The relations of comparative anatomy to comparative psychology. J. Comp. Neurol. Psychol. 18: 437–457.CrossRefGoogle Scholar
  13. GEREBTZOFF, M. A. 1939. Les voies centrales de la sensibilité et du gout et leurs terminaisons thalamiques. Cellule 48: 91–146.Google Scholar
  14. HERRICK, J. C. 1905. The central gustatory paths in the brains of bony fishes. J. Comp. Neurol. Psychol. 15: 375–456.CrossRefGoogle Scholar
  15. KAWAMURA, Y., KASAHARA, Y., and FUNAKOSHI, M. 1970. A possible brain mechanism for rejection behavior to strong salt solution. Physiol. Behay. 5: 67–74.CrossRefGoogle Scholar
  16. LARUE, C., and LE MAGNEN, J. 1973. Effets de l’interruption des voies olfacto-hypothalamiques sur la séquence alimentaire du rat. J. Physiol., Paris 66: 699–713.Google Scholar
  17. LE MAGNEN, J. 1967. Habits and food intake. Pages 11–30 in C. F. Code (ed.), Handbook of Physiology. Section 6: Alimentary Canal. Vol. 1. Control of Food and Water Intake. American Physiol. Society, Washington, D. C.Google Scholar
  18. LEONARD, C. M. 1969. The prefrontal cortex of the rat. I. Cortical projection of the medio-dorsal nucleus. II. Efferent connections. Brain Res. 12: 321–343.PubMedCrossRefGoogle Scholar
  19. LEONARD, C. M. 1972. The connections of the dorsomedial nuclei. Brain, Behay. Evol. 6: 524–541.CrossRefGoogle Scholar
  20. LUNDBERG, P. O. 1962. The nuclei gemini. Two hitherto undescribed nerve cell collections in the hypothalamus of the rabbit. J. Comp. Neurol. 119: 311–316.PubMedCrossRefGoogle Scholar
  21. MAKOUS, W., NORD, S., OAKLEY, B., and PFAFFMANN, C. 1963. The gustatory relay in the medulla. Pages 381–393 in Y. Zotterman (ed.), Proceedings of the First International Symposium on Olfaction and Taste. Pergamon Press, Oxford.Google Scholar
  22. NICOLAIDIS, S. 1969. Early systemic responses to orogastric stimulation in the regulation of food and water balance: functional and electrophysiological data. Annals N. Y. Acad. Sci. 157: 1176–1203.CrossRefGoogle Scholar
  23. NORGREN, R. 1970. Gustatory responses in the hypothalamus. Brain Res. 21: 63–77.PubMedCrossRefGoogle Scholar
  24. NORGREN, R. 1974. Gustatory afferents to ventral forebrain. Brain Res. 81: 285–295.PubMedCrossRefGoogle Scholar
  25. NORGREN, R. 1976. Taste pathways to hypothalamus and amygdala. J. Comp. Neurol. 166: 17–30.PubMedCrossRefGoogle Scholar
  26. NORGREN, R., and GRILL, H. J. 1976. Efferent distribution from the cortical gustatory area in rats. Neuroscience Abstracts: Proceedings of the Sixth Annual Meeting of the Society for Neuroscience. Toronto, November 1976, In press.Google Scholar
  27. NORGREN, R., and LEONARD, C. M. 1971. Taste pathways in rat brainstem. Science 173: 1136–1139.PubMedCrossRefGoogle Scholar
  28. NORGREN, R., and LEONARD, C. M. 1973. Ascending central gustatory pathways. J. Comp. Neurol. 150: 217–238.PubMedCrossRefGoogle Scholar
  29. NORGREN, R., and PFAFFMANN, C. 1975. The pontine taste area in the rat. Brain Res. 91: 99–117.PubMedCrossRefGoogle Scholar
  30. NORGREN, R., and WOLF, G. 1975. Projections of thalamic gustatory and lingual areas in the rat. Brain Res. 92: 123–129.PubMedCrossRefGoogle Scholar
  31. OAKLEY, B., and BENJAMIN, R. M. 1967. Neural mechanisms of taste. Physiol. Rev. 46: 173–211.Google Scholar
  32. PRIBRAM, K. H., CHOW, K. L., and SEMMES, J. 1953. Limit and organization of the cortical projection from the medial thalamic nucleus in the monkey. J. Comp. Neurol. 98: 433–448.PubMedCrossRefGoogle Scholar
  33. RUPE, B. D., and MAYER, J. 1967. Endogenous glucose release by oral sucrose administration in rats. Experientia 23: 1009–1010.PubMedCrossRefGoogle Scholar
  34. SCOTT, J. W., and CHAFIN, B. R. 1975. Origin of olfactory projections to lateral hypothalamus and nuclei gemini of the rat. Brain Res. 88: 64–68.PubMedCrossRefGoogle Scholar
  35. SCOTT, J. W., and LEONARD, C. M. 1971. The olfactory connections of the lateral hypothalamus in the rat, mouse and hamster. J. Comp. Neurol. 141: 331–344.PubMedCrossRefGoogle Scholar
  36. SCOTT, J. W., and PFAFFMANN, C. 1967. Olfactory input to the hypothalamus: electrophysiological evidence. Science 158: 1592–1594.PubMedCrossRefGoogle Scholar
  37. SCOTT, J., and PFAFFMANN, C. 1972. Characteristics of responses of lateral hypothalamic neurons to stimulation of the olfactory system. Brain Res. 48: 251–264.PubMedCrossRefGoogle Scholar
  38. SKULTETY, F. M. 1973. Hyperphagia after midbrain lesions involving the medial lemniscus. Exp. Neurol. 38: 6–19.PubMedCrossRefGoogle Scholar
  39. SMITH, R. L. 1973. The ascending fiber projections from the principal sensory trigeminal nucleus in the rat. J. Comp. Neurol. 148: 423–446.PubMedCrossRefGoogle Scholar
  40. SMITH, R. L. 1975. Axonal projections and connections of the principal sensory trigeminal nucleus in the monkey. J. Comp. Neurol. 163: 347–376.PubMedCrossRefGoogle Scholar
  41. TAKAORI, S., SASA, M, and FALCUDA, N. 1968. Responses of posterior hypothalamic neurons to electrical stimulation of the inferior alveolar nerve and distention of stomach with cold and warm water. Brain Res. 11: 225–237.PubMedCrossRefGoogle Scholar
  42. TANABE, T., YARITA, H., IIMO, M., OGSHIMG, Y., and TAKAGI, S. F. 1975. An olfactory projection area in orbitofrontal cortex of monkey. J. Neurophysiol. 38: 1269–1283.PubMedGoogle Scholar
  43. TORVIK, A. 1955. Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures. An experimental study in the rat. J. Comp. Neurol. 106: 51–141.CrossRefGoogle Scholar
  44. TORVIK, A. 1957. The ascending fibers from the main trigeminal sensory nucleus. An experimental study in the cat. Am. J. Anat. 100: 1–15.PubMedCrossRefGoogle Scholar
  45. WYRWICKA, W., and CHASE, M. H. 1970. Projections from the buccal cavity to brain stem sites involved in feeding behavior. Exp. Neurol. 27: 512–519.PubMedCrossRefGoogle Scholar
  46. ZEIGLER, H. P., and KARTEN, H. J. 1973a. Brain mechanisms and feeding behavior in the pigeon (Columba livia): I. Quinto-frontal structures. J. Comp. Neurol. 152: 59–83.PubMedCrossRefGoogle Scholar
  47. ZEIGLER, H. P., and KARTEN, H. J. 1973b. Brain mechanisms and feeding behavior in the pigeon (Columba livia): II. Analysis of feeding behavior deficits after lesions of quinto-frontal structures. J. Comp. Neurol. 152: 83–101.PubMedCrossRefGoogle Scholar
  48. ZEIGLER, H. P., and KARTEN, H. J. 1974. Central trigeminal structures and the lateral hypothalamic syndrome in the rat. Science 186: 636–638.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Ralph Norgren
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations