Advertisement

Central Processing of Olfactory Signals

  • Gordon M. Shepherd

Abstract

Olfactory information is transmitted from the olfactory receptors in the nose through several stages of processing in the olfactory bulb and the olfactory regions of the brain. Through recent and ongoing work, we are learning a good deal about the basic anatomy and physiology of these pathways. I shall confine myself to reviewing here some of the areas in which progress has been most rapid and most promising for understanding mechanisms of odor processing.

Keywords

Granule Cell Olfactory Bulb Olfactory Receptor Mitral Cell Olfactory Tubercle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andres, K.H. 1965. Der Feinbau des Bulbus Olfactorius der Ratte unter besonderer Berücksichtigung der Synaptischen Verbindungen. Z. Zellforsch. 65: 530–561.PubMedCrossRefGoogle Scholar
  2. Beidenbach, M.A. and C.F. Stevens. 1975. Synaptic organization of cat olfactory cortex as revealed by intracellular recording. J. Neurophysiol. 32: 204–214.Google Scholar
  3. Broadwell, R.D. 1975. Olfactory relationships of the telencephalon and diencephalon in the rabbit. II. An autoradiographic and horseradish peroxidase study of the efferent connections of the anterior olfactory nucleus. J. Comp. Neurol. 164: 389–410.CrossRefGoogle Scholar
  4. Doving, K.B., and A.J. Pinching. 1973. Selective degeneration of neurones in the olfactory bulb following prolonged odour exposure. Brain Res. 52: 115–129.PubMedCrossRefGoogle Scholar
  5. Duchamp, A., M.F. Revial, A. Holley and P. MacLeod. 1974. Odor discrimination by frog olfactory receptors. Chem. Senses Flavor 1: 213–233.Google Scholar
  6. Eleftheriou, B.F. (ed.) 1972. The Neurobiology of the Amygdala. New York: Plenum.Google Scholar
  7. Freeman, W.J. 1964. A linear distributed feedback model for prepyriform cortex. Exptl. Neurol. 10: 525–547.CrossRefGoogle Scholar
  8. Fuxe, K. 1965. The distribution of monoamine terminals in the central nervous system. Acta physiol. scand. 64: Suppl. 247, 37–85.Google Scholar
  9. Getchell, T.V. and G.M. Shepherd. 1975. Short-axon cells in the olfactory bulb: dendrodendritic synaptic interactions. J. Physiol. ( London ) 251: 523–548.PubMedGoogle Scholar
  10. Haberly, L.B. and G.M. Shepherd. 1973. Current density analysis of summed evoked potentials in opossum prepyriform cortex. J. Neurophysiol. 36: 789–802.PubMedGoogle Scholar
  11. Heimer, L. and J. de Olmos. 1975. The olfactory tubercle projections in the rat. Neurosci. Abst. p. 680.Google Scholar
  12. Heimer, L. and R.D. Wilson. 1975. The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. in Golgi Centennial Symposium (ed. M. Santini ). New York: Raven. pp. 177–193.Google Scholar
  13. Hirata, Y. 1964. Some observations on the fine structure of the synapses in the olfactory bulb of the mouse, with particular reference to the atypical synaptic configuration. Arch. Histol. Japan 24: 293–302.CrossRefGoogle Scholar
  14. Hubel, D.H. and T. Wiesel. 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex.J. Physiol. ( London ) 160: 106–154.PubMedGoogle Scholar
  15. Kauer, J.S. 1974. Response patterns of amphibian olfactory bulb neurones to odour stimulation. J. Physiol. ( London ) 243: 695–715.PubMedGoogle Scholar
  16. Kauer, J.S. and D.G. Moulton. 1974. Responses of olfactory bulb neurones to odor stimulation of small nasal areas in the salamander. J. Physiol. ( London ) 234: 717–737.Google Scholar
  17. Kauer, J.S. and G.M. Shepherd. 1975a. Olfactory stimulation with controlled and monitored step pulses of odor. Brain Res. 85: 108–113.PubMedCrossRefGoogle Scholar
  18. Kauer, J.S. and G.M. Shepherd. 1975b. Concentration-specific responses of salamander olfactory bulb units. J. Physiol. (London) 252: 49–50 P.Google Scholar
  19. Kerr, D.I.B. and K.-E. Hagbarth. 1955. An investigation of olfactory centrifugal fiber system. J. Neurophysiol. 18: 362–374.PubMedGoogle Scholar
  20. Krieger, N.R., J.S. Kauer, G.M. Shepherd and P. Greengard. Dopamine-sensitive adenylate cyclase within laminae of the olfactory tubercle. Brain Res. (in press).Google Scholar
  21. Kuffler, S.W. 1953. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16: 37.PubMedGoogle Scholar
  22. Land, L.J. 1973. Localized projection of olfactory nerves to rabbit olfactory bulb. Brain Res. 63: 153–166.PubMedCrossRefGoogle Scholar
  23. Land, L.J., R.P. Eager, and G.M. Shepherd. 1971. Olfactory nerve projections to the olfactory bulb in rabbit: demonstration by means of a simple ammoniacal silver degeneration method. Brain Res. 23: 250–254.CrossRefGoogle Scholar
  24. MacLean, P.D. 1972. Implications of microelectrode findings on exteroceptive inputs to the limbic cortex. in Limbic System Mechanisms and Autonomic Function (ed. C.H. Hackman ). Springfield: Thomas. pp. 115–136.Google Scholar
  25. Moulton, D.G. 1976. Spatial patterning of responses to odors in the peripheral olfactory system. Physiol. Rev. 56: 578–593.PubMedGoogle Scholar
  26. Mozell, M.M. 1971. Spatial and temporal patterning. in Handbook of Physiology. vol. IV. Chemical Senses 1: Olfaction (ed. by L.M. Beidler ). Berlin: Springer. pp. 205–215.Google Scholar
  27. Nicoll, R.A. 1969. Inhibitory mechanisms in the rabbit olfactory bulb: dendrodendritic mechanisms. Brain Res. 14: 157–172.PubMedCrossRefGoogle Scholar
  28. Ottoson, D. and G.M. Shepherd. 1971. Transducer properties and integrative mechanisms in the frog’s muscle spindle. in Handbook of Sensory Physiology. vol. I. Principles of Receptor Physiology (ed. W.R. Loewenstein). New York. Springer: pp. 442–499.CrossRefGoogle Scholar
  29. Phillips, C.G., T.P.S. Powell, and G.M. Shepherd. 1963. Responses of mitral cells to stimulation of the lateral olfactory tract in the rabbit. J. Physiol. ( London ) 168: 65–88.PubMedGoogle Scholar
  30. Pinching, A.J. and T.P.S. Powell. 1971. The neuropil of the glomeruli of the olfactory bulb. J. Cell Sci. 9: 347–377.PubMedGoogle Scholar
  31. Powell, T.P.S., W.M. Cowan and G. Raisman. 1965. The central olfactory connexions. J. Anat. 99: 791–813.PubMedGoogle Scholar
  32. Price, J.L. 1973. An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex. J. Comp. Neurol. 150: 87–108.PubMedCrossRefGoogle Scholar
  33. Price, J.L. and T.P.S. Powell. 1970. The synaptology of the granule cells of the olfactory bulb. J. Cell Sci. 7: 125–155.PubMedGoogle Scholar
  34. Raisman, G. 1972. An experimental study of the projection of the amydgala to the accessory olfactory bulb and its relationship to the concept of a dual olfactory system. Exp. Brain Res. 14: 395–408.PubMedCrossRefGoogle Scholar
  35. Rall, W. and G.M. Shepherd. 1968. Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J. Neurophysiol. 31: 884–915.PubMedGoogle Scholar
  36. Rall, W., G.M. Shepherd, T.S. Reese and M.W. Brightman. 1965. Dendro-dendritic synaptic pathway for inhibition in the olfactory bulb. Exptl. Neurol. 14: 44–56.CrossRefGoogle Scholar
  37. Scott, J.W. and B.R. Chafin. 1975. Origin of olfactory projections to lateral hypothalamus and nuclei gemini of the rat. Brain Res. 88: 64–68.PubMedCrossRefGoogle Scholar
  38. Scott, J.W. and C.M. Leonard. 1971. The olfactory connections of the lateral hypothalamus in the rat, mouse and hamster. J. Comp. Neurol. 141: 331–344.Google Scholar
  39. Sharp, F.R., J.S. Kauer and G.M. Shepherd. 1971. Local sites of activity-related glucose metabolism in rat olfactory bulb during olfactory stimulation. Brain Res. 98: 596–600.CrossRefGoogle Scholar
  40. Shepherd, G.M. 1972. Synaptic organization of the mammalian olfactory bulb. Physiol. Rev. 52: 864–917.Google Scholar
  41. Shepherd, G.M. 1974. The Synaptic Organization of the Brain. New York: Oxford.Google Scholar
  42. Shepherd, G.M., T.V. Getchell and J.S. Kauer. 1975. Analysis of structure-function relations in the olfactory pathway. in The Nervous System: The Basic Neurosciences (ed. R. Brady ). New York: Raven. pp. 207–220.Google Scholar
  43. Sokoloff, L. 1975. Influence of functional activity on local cerebral glucose utilization. in Brain Work: the Coupling of Function, Metabolism and Blood Flow in the Brain. (ed. by D.H. Ingvar and N.A. Lassen ). Copenhagen: Munksgaard. pp. 385–388.Google Scholar
  44. Stevens, J.R. 1973. An anatomy of schizophrenia? Arch. Gen. Psychiatr. 29: 177–189.PubMedCrossRefGoogle Scholar
  45. Ungerstedt, U. 1971. Stereotoxic mapping of the monoamine pathways in the rat brain. Acta physiol. Scand. Suppl. 367: 1–48.PubMedGoogle Scholar
  46. Westrum, L.E. 1969. Electron microscopy of degeneration in the lateral olfactory tract and plexiform layer of the prepyriform cortex of the rat. Z. Zellforsch. 98: 157–187.PubMedCrossRefGoogle Scholar
  47. White, L.E. 1973. Synaptic organization of the mammalian olfactory glomerulus: new findings including an intraspecific variation. Brain Res. 60: 299–313.PubMedCrossRefGoogle Scholar
  48. Winans, S.S. and F. Scalia. 1970. Amygdaloid nucleus: new afferent input from the vomeronasal organ. Science 170: 330–332.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Gordon M. Shepherd
    • 1
  1. 1.Yale University School of MedicineNew HavenUSA

Personalised recommendations