Advertisement

Coherent Spectroscopy in Electronically Excited States

  • Charles B. Harris
  • William G. Breiland

Abstract

This chapter deals with one of the new generation of coherence experiments that have been developing in the past few years. In this instance the coherence techniques are applied to levels within electronically excited states, and the coherence is monitored by a double-resonance method. Although the techniques are applicable to many traditional magnetic resonance experiments, they also form the basis for investigating molecular dynamics in spectroscopy and promise to reveal a great deal about the time evolution of excited states and the nature of time-dependent interactions between molecular states in solids. The specific development given here will be confined to coherence experiments in the molecular excited triplet states in zero field; however, it is not too difficult to visualize how the methods could be applied to a wide variety of other systems and problems, some of which are outlined in other chapters of this volume. It is important to stress that the generality of the approach makes it useful to any double-resonance experiment in a multilevel system regardless of whether the levels are associated with spin systems or electronic states, or both, as is the case with optically detected magnetic resonance. For this reason we will develop the theory rather completely.

Keywords

Probe Pulse Electronically Excite State Excited Triplet State Optically Detect Magnetic Resonance Exciton Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A., 1961, The Principles of Nuclear Magnetism, Oxford University Press, Inc., New York.Google Scholar
  2. Anderson, A. G., and Hartmann, S. R., 1962, Phys. Rev. 128: 2023.ADSMATHCrossRefGoogle Scholar
  3. Anderson, P. W., 1954, J. Phys. Soc. Japan 9: 316.ADSCrossRefGoogle Scholar
  4. Barrat, J. P., and Cohen-Tannoudji, C., 1961, J. Phys. Radium 22: 329–443.CrossRefGoogle Scholar
  5. Bloch, F., 1946, Phys. Rev. 70: 460.ADSCrossRefGoogle Scholar
  6. Breiland, W. G., Harris, C. B., and Pines, A., 1973, Phys. Rev. Lett. 30: 158.ADSCrossRefGoogle Scholar
  7. Breiland, W. G., Brenner, H. C., and Harris, C. B., 1975, J. Chem. Phys. 62: 3458.ADSCrossRefGoogle Scholar
  8. Breiland, W. G., Fayer, M. D., and Harris, C. B., 1976, Phys. Rev. A13: 383.ADSCrossRefGoogle Scholar
  9. Brenner, H. C., Brock, J. C., and Harris, C. B., 1974, J. Chem. Phys. 60: 4448.ADSCrossRefGoogle Scholar
  10. Brenner, H. C., Brock, J. C., Fayer, M. D., and Harris, C. B., 1975, Chem. Phys. Lett. 33: 471.ADSCrossRefGoogle Scholar
  11. Brock, J. C., Brenner, H. C., and Harris, C. B., 1977, unpublished results.Google Scholar
  12. Carr, H. Y., and Purcell, E. M., 1954, Phys. Rev. 94: 630.ADSCrossRefGoogle Scholar
  13. Chan, I. Y., Schmidt, J., and van der Waals, J. H., 1969, Chem. Phys. Lett. 4: 269.ADSCrossRefGoogle Scholar
  14. Chan, I. Y., van Dorp, W. G., Schaafsma, T. J., and van der Waals, J. H., 1971, Mol. Phys. 22: 741.ADSCrossRefGoogle Scholar
  15. de Groot, M. S., Hesselmann, I. A. M., and van der Waals, J. H., 1967, Mol. Phys. 12: 259.ADSCrossRefGoogle Scholar
  16. Dennison, A. B., 1973, Magn. Resonance 2: 1.Google Scholar
  17. Dexter, D. L., 1953, J. Chem. Phys. 21: 836.ADSCrossRefGoogle Scholar
  18. El-Sayed, M. A., 1968, Acc. Chem. Res. 1: 8.CrossRefGoogle Scholar
  19. El-Sayed, M. A., 1971, Acc. Chem. Res. 4: 23.CrossRefGoogle Scholar
  20. El-Sayed, M. A., 1974, in: Excited States (E. Lim, ed.), Vol. 1, p. 35, Academic Press, Inc., New York.Google Scholar
  21. El-Sayed, M. A., 1972, in: MTP International Review of Science, Vol. 3, “Spectroscopy” (A. D. Buckingham and D. A. Ramsey, eds. ), Butterworths, London.Google Scholar
  22. El-Sayed, M. A., and Olmsted, J., III, 1971, Chem. Phys. Lett. 11: 568.ADSCrossRefGoogle Scholar
  23. Farrar, T. C., and Becker, E. D., 1971, Pulse and Fourier Transform NMR, Academic Press, Inc., New York.Google Scholar
  24. Fayer, M. D., and Harris, C. B., 1974a, Phys. Rev. B9: 748.ADSCrossRefGoogle Scholar
  25. Fayer, M. D., and Harris, C. B., 1974b, Chem. Phys. Lett. 24: 149.ADSCrossRefGoogle Scholar
  26. Fayer, M. D., Harris, C. B., and Yuen, D. A., 1970, J. Chem. Phys. 53: 4719.ADSCrossRefGoogle Scholar
  27. Feynman, R. P., Vernon, F. L., and Hellwarth, R. W., 1957, J. Appl. Phys. 28: 49.ADSCrossRefGoogle Scholar
  28. Francis, A. H., and Harris, C. B., 1971a, Chem. Phys. Lett. 9: 181–188.ADSCrossRefGoogle Scholar
  29. Francis, A. H., and Harris, C. B., 1971b, J. Chem. Phys. 55: 3595.ADSCrossRefGoogle Scholar
  30. Geschwind, S., Devlin, G. E., Cohen, R. L., and Chinn, S. R., 1965, Phys. Rev. A137: 1097.ADSCrossRefGoogle Scholar
  31. Haeberlen, U., and Waugh, J. S., 1968, Phys. Rev. 175: 453.ADSCrossRefGoogle Scholar
  32. Haeberlen, U., and Waugh, J. S., 1969, Phys. Rev. 185: 420.ADSCrossRefGoogle Scholar
  33. Hahn, E. L., 1950, Phys. Rev. 80: 580.ADSMATHCrossRefGoogle Scholar
  34. Harris, C. B., 1971, J. Chem. Phys. 54: 972.ADSCrossRefGoogle Scholar
  35. Harris, C. B., and Buckley, M. J., 1975, Advan. Nucl. Quadrupole Resonance 2: 15.Google Scholar
  36. Harris, C. B., and Hoover, R. J., 1972, J. Chem. Phys. 56: 2199.ADSCrossRefGoogle Scholar
  37. Harris, C. B., and Tarrasch, M., 1977, unpublished results.Google Scholar
  38. Harris, C. B., Tinti, D. S., El-Sayed, M. A., and Maki, A. H., 1969, Chem. Phys. Lett. 4: 409.ADSCrossRefGoogle Scholar
  39. Harris, C. B., Schlupp, R. L., and Schuch, H., 1973, Phys. Rev. Lett. 30: 1019.ADSCrossRefGoogle Scholar
  40. Hartmann, S. R., and Hahn, E. L., 1962, Phys. Rev. 128: 2042.ADSMATHCrossRefGoogle Scholar
  41. Hutchison, C. A., Jr., and Mangum, B. W., 1958, J. Chem. Phys. 29: 952.ADSCrossRefGoogle Scholar
  42. Hutchison, C. A., Jr., and Mangum, B. W., 1961, J. Chem. Phys. 34: 908.ADSCrossRefGoogle Scholar
  43. Kuan, T. S., Tinti, D. S., and El-Sayed, M. A., 1970, Chem. Phys. Lett. 4: 341.CrossRefGoogle Scholar
  44. Kubo, R., 1954, J. Phys. Soc. Japan 9: 935.ADSCrossRefGoogle Scholar
  45. Kubo, R., and Tornita, K., 1954, J. Phys. Soc. Japan 9: 888.ADSCrossRefGoogle Scholar
  46. Kwiram, A. L., 1967, Chem. Phys. Lett. 1: 272.ADSCrossRefGoogle Scholar
  47. Kwiram, A., 1972, Int. Rev. Sci., Ser. I, 4: 271.Google Scholar
  48. Lewellyn, M. T., Zewail, A. H., and Harris, C. B., 1975, J. Chem. Phys. 63: 3687.ADSCrossRefGoogle Scholar
  49. Lewis, G. N., and Kasha, M. J., 1944, J. Amer. Chem. Soc. 66: 2100.CrossRefGoogle Scholar
  50. Lewis, G. N., and Kasha, M. J., 1945, J. Amer. Chem. Soc. 67: 994.CrossRefGoogle Scholar
  51. McClure, D. S., 1952, J. Chem. Phys. 20: 682.ADSCrossRefGoogle Scholar
  52. McConnell, H. M., 1958, J. Chem. Phys. 28: 430.ADSCrossRefGoogle Scholar
  53. Meiboom, S., and Gill, D., 1958, Rev. Sci. Instr. 29: 688.ADSCrossRefGoogle Scholar
  54. Putzer, E. J., 1966, Amer. Math. Monthly 73: 2.MathSciNetMATHCrossRefGoogle Scholar
  55. Redfield, A. G., 1955, Phys. Rev. 98: 1787.ADSCrossRefGoogle Scholar
  56. Schmidt, J., 1972, Chem. Phys. Leu. 14: 411.ADSCrossRefGoogle Scholar
  57. Schmidt, J., and van der Waals, J. H., 1968, Chem. Phys. Lett. 2: 460.CrossRefGoogle Scholar
  58. Schmidt, J., Veeman, W. S., and van der Waals, J. H., 1969, Chem. Phys. Lett. 4: 341.ADSCrossRefGoogle Scholar
  59. Schmidt, J., van Dorp, W. G., and van der Waals, J. H., 1971, Chem. Phys. Lett. 8: 345.ADSCrossRefGoogle Scholar
  60. Schuch, H., and Harris, C. B., Z. Naturforsch. 30a: 361.Google Scholar
  61. Sharnoff, M., 1967, J. Chem. Phys. 46: 3263.ADSCrossRefGoogle Scholar
  62. Shpolskii, E. V., 1960, Soviet Phys. Usp. 3: 373.ADSGoogle Scholar
  63. Shpolskii, E. V., 1962, Soviet Phys. Usp. 5: 522.ADSCrossRefGoogle Scholar
  64. Shpolskii, E. V., 1963, Soviet Phys. Usp. 6: 411.ADSCrossRefGoogle Scholar
  65. Slichter, C. P., and Holton, W. C., 1961, Phys. Rev. 122: 1701.ADSCrossRefGoogle Scholar
  66. Solomon, I., 1959a, C. R. Acad. Sci. Paris 248: 92.Google Scholar
  67. Solomon, I., 19596, Phys. Rev. Lett. 2: 301.Google Scholar
  68. Swift, T. J., and Connick, R. E., 1962, J Chem. Phys. 37: 307.ADSGoogle Scholar
  69. Tinti, D. S., El-Sayed, M. A., Maki, A. H., and Harris, C. B., 1969, Chem. Phys. Lett. 4: 409.ADSCrossRefGoogle Scholar
  70. Torrey, H. C., 1949, Phys. Rev. 76: 1059.ADSMATHCrossRefGoogle Scholar
  71. van’t Hof, C. A., and Schmidt, J., 1975a, Chem. Phys. Lett. 36: 457.ADSCrossRefGoogle Scholar
  72. van’t Hof, C. A., and Schmidt, J., 1975b, Chem. Phys. Lett. 36: 460.ADSCrossRefGoogle Scholar
  73. van’t Hof, C. A., and Schmidt, J., 1976a, Chem. Phys. Leu. 42: 73.ADSCrossRefGoogle Scholar
  74. van’t Hof, C. A., and Schmidt, J., 1976b, unpublished results.Google Scholar
  75. van’t Hof, C. A., Schmidt, J., Verbeek, P. J. F., and van der Waals, J. H., 1973, Chem. Phys. Leu. 21: 437.ADSCrossRefGoogle Scholar
  76. Veeman, W. S., and van der Waals, J. H., 1970, Chem. Phys. Leu. 7: 65.ADSCrossRefGoogle Scholar
  77. Waugh, J. S., Wang, C. H., Huber, L. M., and Vold, R. L., Jr., 1968, J. Chem. Phys. 48: 662.ADSCrossRefGoogle Scholar
  78. Webb, R. H., 1962, Rev. Sci. Instr. 33: 732.ADSCrossRefGoogle Scholar
  79. Winscom, C. J., and Maki, A. H., 1971, Chem. Phys. Lea. 12: 264.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Charles B. Harris
    • 1
  • William G. Breiland
    • 2
  1. 1.Department of Chemistry, and Materials and Molecular Research Division of Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of ChemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations