Local Supersymmetry and Gravitation

  • P. van Nieuwenhuizen


We discuss a recently1,2,3 discovered Lagrangian field theory for gravitation, which is locally supersymmetric (“super-gravity”) and which uses normal four dimensional spacetime instead of superspace. The action contains the Einstein action and the minimally coupled spin 3/2 action together with a non-derivative four-fermion interaction of gravitational strength. When recast in a first order formalism with torsion, the action contains no four-fermion term but the spin 3/2 field is coupled in a non-minimal way.

The commutator of two local supersymmetry transformations produces a general coordinate and local Lorentz transformation. This deeper symmetry which connects the structure of spacetime with transformations between bosons and fermions, seems interesting. Applications to quantum gravity are discussed.


Gauge Theory Gauge Field Supersymmetry Transformation Dirac Matrice Auxiliary Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.Z. Freesman, P. van Nieuwenhuizen and S. Ferrara, Phys. Rev. D13, 3214 (1976).Google Scholar
  2. 2.
    S. Deser and B. Zumino, Phys. Lett. B62, 335 (1976).MathSciNetCrossRefGoogle Scholar
  3. 3.
    D.Z. Freedman and P. van Nieuwenhuizen, Phys. Rev. D14, 912 (1976).Google Scholar
  4. 4.
    J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974).Google Scholar
  5. 5.
    See for example G. Kallen, “Elementary Particle Physics”, Addison Wesley (1964).Google Scholar
  6. 6.
    A. Salam and J. Strathdee, Nucl. Phys. B76, 477 (1974); The extension of this theorem to massless particles is due to B. Zumino.Google Scholar
  7. 7.
    M. Fierz and W. Pauli, Proc. Roy. Soc. (London), A173, 211 (1939). W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).Google Scholar
  8. 8.
    M.T. Grisaru, H. Pendleton and P. van Nieuwenhuizen, Phys. Rev. D, to be published.Google Scholar
  9. 9.
    G. ’t Hooft and M. Veltman, Ann. Inst. H. Poincare 20, 69 (1974).Google Scholar
  10. 10.
    P. van Nieuwenhuizen, Proc. Trieste conf. June 1976; S. Deser, Proc. Boston Gauge Conf. Sept. 1975.Google Scholar
  11. 11.
    M.T. Grisaru, P. van Nieuwenhuizen and C.C. Wu, Phys. Rev. D12, D13 (1975).Google Scholar
  12. 12.
    P. van Nieuwenhuizen, Proc. Caracas Conf. Dec. 1975, to be published.Google Scholar
  13. 13.
    P. van Nieuwenhuizen, Ann. of Phys., to be published.Google Scholar
  14. 14.
    A. Das and D.Z. Freedman, Nucl. Phys., to be published.Google Scholar
  15. 15.
    B. Zumino, Proc. London Conf. July 1974.Google Scholar
  16. 16.
    B. deWit and D.Z. Freedman, Phys. Rev. Letters 35, 827 (1975). W.A. Bardeen, unpublished.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • P. van Nieuwenhuizen
    • 1
  1. 1.Institute for Theoretical PhysicsState University of New YorkStony Brook, Long IslandUSA

Personalised recommendations