)-(-Space and Null Infinity

  • M. Ko
  • E. T. Newman
  • K. P. Tod

Abstract

Our object in this article is to provide a review of one approach to asymptotically flat space-times, and to show how this proach leads to the introduction of an associated four complex dimensional manifold, )-(-space, with remarkable properties.

Keywords

Manifold Dinates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Part I

  1. 1.
    R.W. Lind, J. Messmer and E.T. Newman, J. Math. Phys. 13 1884 (1972).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    E.T. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966). J.N. Goldberg., J. Math. Phys. 8 2155 (1967).Google Scholar
  3. 3.
    E.T. Newman and R. Penrose, J. Math. Phys. 3 566 (1962).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    F.A.E. Pirani in “Lectures on General Relativity” Brandeis Summer School, Prentice Hall (N.Y.) 1965.MATHGoogle Scholar
  5. 5.
    As an example of the spin coefficient formalism applied to complex spaces see C.W. Fette, A.L. Janis, E.T. Newman, J. Math. Phys. 17 660 (1976).Google Scholar
  6. 6.
    A.R. Exton, E.T. Newman and R. Penrose, J. Math. Phys., 10 1566 (1969).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    R. Penrose, Proc. Roy. Soc. Land. A284 159 (1965).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    R. Penrose in Battelle Pencontres, Benjamin (N.Y.) 1968.Google Scholar
  9. 9.
    R. Penrose and M.A.H. MacCallum, Phys. Rep. 6C 242 (1973). E.J. Flaherty, “Hermitian and Kahlerian Geometry in Relativity”, Lecture Notes in Physics #46, Springer Verlag 1976.Google Scholar
  10. 10.
    R. Penrose, private conversation.Google Scholar
  11. 11.
    L. Tamburino and J. Winicour, Phys. Rev. 150 1039 (1966).ADSCrossRefGoogle Scholar
  12. 1.
    E.T. Newman, General Relativity and Gravitation; Proceedings of the Seventh International Conference (GR7) Tel-Aviv University, June 23–28, 1974, John Wiley and Sons, N.Y. 1975.Google Scholar
  13. 2.
    R. Hansen, E.T. Newman, R. Penrose, in preparation (intended to appear).Google Scholar
  14. 3.
    R. Penrose, GRG, 7, 31 (.1976),Google Scholar
  15. 4.
    E.T. Newman, GRG, 7, 107 (1976),Google Scholar
  16. 5.
    R. Penrose, “The Nonlinear Graviton”, 1975 Gravity Research Foundation Prize Essay.Google Scholar
  17. 6.
    C.W. Fette, A.I. Janis, E.T. Newman, J. Math. Phys. 17, 660 (1976).MathSciNetADSCrossRefGoogle Scholar
  18. 7.
    J.F. Plenbaski, J. Math. Phys. 16, 2395 (1975).ADSCrossRefGoogle Scholar
  19. 8.
    J.F. Plebanski, S. Hacyan, J. Math. Phys. 16, 2403 (1975).MathSciNetADSMATHCrossRefGoogle Scholar
  20. 9.
    M. Ko, E.T. Newman, R. Penrose, “Kahler Structure of Asymptotic Twistor Space”, in preparation.Google Scholar
  21. 10.
    R. Penrose, “Twistor Theory, Its Aims and Achievements”, in Quantum Gravity (eds. C.J. Isham, R. Penrose, D.W. Sciama) Oxford University Press,(1975).Google Scholar
  22. 11.
    E.J. Flaherty, “Hermitian and Kahlerian Geometry in Relativity” Lecture Notes in Physics #46, Springer Verlag (1976).CrossRefGoogle Scholar
  23. 12.
    R. Penrose and M. MacCallum, Phys. Rep. 6C, No. 4, (1973).Google Scholar
  24. 13.
    E. Newman, R. Penrose, J. Math. Phys. 3, 566 (1962).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • M. Ko
    • 1
  • E. T. Newman
    • 1
  • K. P. Tod
    • 2
  1. 1.Department of Physics and AstronomyUniversity of PittsburghPittsburghUSA
  2. 2.Department of MathematicsUniversity of PittsburghPittsburghUSA

Personalised recommendations