Advertisement

The Production of Elementary Particles by Strong Gravitational Fields

  • Leonard Parker

Abstract

The creation of particles by gravitational fields is a natural consequence of quantum field theory in curved space-time. It occurs in particle-antiparticle pairs in the models considered, and does not violate the local conservation laws. This process has important consequences in cosmological and black hole metrics.

Keywords

Black Hole Late Time Event Horizon Minkowski Space Particle Creation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Parker, Ph.D. Thesis, Harvard University, 1966.Google Scholar
  2. 2.
    L. Parker, Phys. Rev. Lett. 21, 562 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    L. Parker, Phys. Rev. 183, 1057 (1969).ADSMATHCrossRefGoogle Scholar
  4. 4.
    L. Parker, Phys. Rev. D3, 346 (1971).ADSGoogle Scholar
  5. 5.
    R.U. Sexl and H.K. Urbantke, Acta Phys. Austriaca 26, 339 (1967).Google Scholar
  6. 6.
    R.U. Sexl and H.K. Urbantke, Phys. Rev. 179, 1247 (1969).ADSCrossRefGoogle Scholar
  7. 7.
    Ya. B. Zeldovich, Pisma v. Zh. ETF 12, 443 (1970) [JETP Lett. 12, 307].Google Scholar
  8. 8.
    Ya. B. Zeldovich and A.A. Starobinsky, Zh. ETF 61, 2161 (1971) [JETP 34, 1159 ].Google Scholar
  9. 9.
    For the classical analogue of this pair creation see E. Schrödinger, Physicals, 899 (1939), and Ref. 10. Schrödinger was aware of the connection with pair creation.Google Scholar
  10. 10.
    E. Schrödinger, Proc. Roy. Irish Acad. 46, 25 (1940).MATHGoogle Scholar
  11. 11.
    V.N. Lukash and A.A. Starobinsky, Zh. ETF 66, 1515 (1974) [JETP 32, 742 (1975)].Google Scholar
  12. 12.
    L. Parker in Proceedings of the Second Latin American Sympo-sium on Relativity and Gravitation, Dec. 1975 (to be published).Google Scholar
  13. 13.
    L. Parker, Nature 261, 20 (1976).ADSCrossRefGoogle Scholar
  14. 14.
    S. Weinberg, Gravitation and Cosmology ( Wiley & Sons, New York ) (1972).Google Scholar
  15. 15.
    S.W. Hawking, Nature 248, 30 (1974).ADSCrossRefGoogle Scholar
  16. 16.
    S.W. Hawking, Commun. Math. Phys. 43, 199 (1975).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    D.N. Page, Phys. Rev. D13, 198 (1976). Further references are given in Section 4 below.Google Scholar
  18. 18.
    Ya. B. Zeldovich, Pisma v. Zh. ETF 14, 270 (1971) [JETP Lett. 14, 180].Google Scholar
  19. 19.
    Ya. B. Zeldovich, Zh ETF 62, 2076 (1972) [JETP 35, 1085 ].Google Scholar
  20. 20.
    C.W. Misner, Bull. Am. Phys. Soc. 17, 472 (1972).Google Scholar
  21. 21.
    W.G. Unruh, Phys. Rev. D10, 3194 (1974).ADSGoogle Scholar
  22. 22.
    L. Ford, Phys. Rev. D12, 2963 (1975). MathSciNetADSGoogle Scholar
  23. 23.
    B.S. DeWitt, Phys. Reports 19, 295 (1975).ADSCrossRefGoogle Scholar
  24. 24.
    D.N. Page, “Emission Rates From a Rotating Black Hole”, preprint OAP-452.Google Scholar
  25. 25.
    G.F. Chapline, Phys. Rev. DL2, 2949 (1975).Google Scholar
  26. 26.
    B.J. Carr, “Primordial Black Hole Mass Spectrum”, preprint OAP-389, 1975.Google Scholar
  27. 27.
    S.W. Hawking, Mon. Nat. R. Astr. Soc. 152, 75 (1971).ADSGoogle Scholar
  28. 28.
    B.J. Carr and S.W. Hawking, Mon. Nat. R. Astr. Soc. 168, 399 (1974).ADSGoogle Scholar
  29. 29.
    L. Parker and S.A. Fulling, Phys. Rev. D7, 2357 (1973). Other references on avoidance of the cosmological singularity are given in Section 3.Google Scholar
  30. 30.
    W. Heisenberg and H. Euler, Zs. f. Phys. 98, 714 (1936).ADSCrossRefGoogle Scholar
  31. 31.
    J. Schwinger, Phys. Rev. 82, 664 (1951).MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    Ya. B. Zeldovich, in Magic Without Magic, ed. by J.R. Kläuder (W.H. Freeman and Co., San Francisco, 1972 ).Google Scholar
  33. 33.
    A.G. Doroshkevitch, V.N. Lukash and I.D. Novikov, Zh. Eksp. Teor. Fiz. 64, 1457 (1973) [JETP 37, 739 (1973)].Google Scholar
  34. 34.
    C. Møller, Royaumont Conf. Proc. (Centre Nat. de la Recherche Sei., Paris, 1962 ) pp. 21–29.Google Scholar
  35. 35.
    L. Parker and S.A. Fulling, Phys. Rev. D9, 341 (1974).MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    S.A. Fulling and L. Parker, Ann. Phys. (N.Y.) 87, 176 (1974).ADSCrossRefGoogle Scholar
  37. 37.
    S.A. Fulling, L. Parker and B.L. Hu, Phys. Rev. DIP, 3905 (1974).Google Scholar
  38. 38.
    S.M. Christensen, Ph.D. Thesis, University of Texas at Austin, 1975.Google Scholar
  39. 39.
    S.M. Christensen, Phys. Rev. D (in press).Google Scholar
  40. 40.
    P.J.E. Peebles, Physical Cosmology (Princeton University Press, New Jersey, 1971 ).Google Scholar
  41. 41.
    E.R. Harrison, A. Rev. Astr. Astrophys. 11, 155 (1973).ADSCrossRefGoogle Scholar
  42. 42.
    J.D. Bekenstein, Nuovo Cim. Lett. 4, 7371 (1972).CrossRefGoogle Scholar
  43. 43.
    J.D. Bekenstein, Phys. Rev. D7, 2333 (1973).MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    J.D. Bekenstein, Phys. Rev. D9, 3292 (1974).ADSCrossRefGoogle Scholar
  45. 45.
    S.W. Hawking, Phys. Rev. Lett. 26, 1344 (1971).ADSCrossRefGoogle Scholar
  46. 46.
    W.G. Unruh, Phys. Rev. D (in press).Google Scholar
  47. 47.
    S.A. Fulling, Ph.D. Thesis, Princeton University, 1972.Google Scholar
  48. 48.
    S.A. Fulling, Phys. Rev. D7, 2850 (1973).ADSCrossRefGoogle Scholar
  49. 49.
    G.W. Gibbons and S.W. Hawking, “Cosmological Event Horizons, Thermodynamics, and Particle Creation”, to be published.Google Scholar
  50. 50.
    R. Figari, R. Höegh-Krohn and C.R. Nappi, Commun. Math. Phys. 44, 265 (1975).ADSCrossRefGoogle Scholar
  51. 51.
    T. Imamura, Phys. Rev. 118, 1430 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  52. 52.
    Examples dealing with production of spin 1/2 particles are Refs. 1–4, 17, 21, and 53, 54, 55 below. Examples dealing with the Maxwell field include Refs. 1, 3, 10, 17, 56, and 78. References on graviton production are given in Section 3.Google Scholar
  53. 53.
    W.G. Unruh, Phys. Rev. Lett. 31, 1265 (1973).ADSCrossRefGoogle Scholar
  54. 54.
    V.M. Frolov, S.G. Mamayev and V.M. Mostepanenko, Phys. Lett. 55A, 389 (1976).Google Scholar
  55. 55.
    J. Audretsch, Nuovo Cim. B17, 248 (1973).CrossRefGoogle Scholar
  56. 56.
    L. Parker, Phys. Rev. D5, 2905 (1972).MathSciNetADSGoogle Scholar
  57. 57.
    See for example L. Parker, Phys. Rev. D7, 976 (1973), Appendix B.Google Scholar
  58. 58.
    H.K. Urbantke, Nuovo Cim. 63B, 203 (1969).Google Scholar
  59. 59.
    For further discussion of canonical quantization in curved space-time see Ref. 47, and Ref. 60 below. One of the earliest discussions is in Ref. 34.Google Scholar
  60. 60.
    A. Ashtekar and A. Magnon, Proc. Roy. Soc. Lond. A346, 375 (1975).MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    N.N. Bogoliubov, Zh. ETF 34, 58 (1958) [JETP 7, 51 (1958)].Google Scholar
  62. 62.
    W. Rind1er, Am. J. Phys. 34, 1174 (1966).ADSCrossRefGoogle Scholar
  63. 63.
    P.C.W. Davies and S.A. Fulling, “Radiation From a Moving Mirror and Black Hole Evaporation” (in preparation).Google Scholar
  64. 64.
    J.B. Hartle and S.W. Hawking, Phys. Rev. D13, 2188 (1976).ADSGoogle Scholar
  65. 65.
    A.S. Lapedes, “Thermal Particle Production In Two Taub Nut Type Spacetimes”, preprint.Google Scholar
  66. 66.
    W. Israel, Phys. Lett, (in press).Google Scholar
  67. 67.
    S.A. Fulling, “Alternative Vacuum States in Static Space-Times with Horizons”, preprint.Google Scholar
  68. 68.
    N. Woodhouse, Phys. Rev. Lett. 36, 999 (1976).MathSciNetADSCrossRefGoogle Scholar
  69. 69.
    A.A. Grib and S.G. Mamaev, Yad. Fiz. 10, 1276 (1969) [Sov. J Nucl. Phys. 10, 722 (1970)].Google Scholar
  70. 70.
    A.A. Grib and S.G. Mamaev, Yad. Fiz. 14, 800 (1971) [Sov. J Nucl. Phys. 14, 450 (1972)].Google Scholar
  71. 71.
    B.K. Berger, Ph.D. Thesis, University of Maryland, 1972.Google Scholar
  72. 72.
    B.K. Berger, Ann. Phys. (N.Y.) 83, 458 (1974).ADSCrossRefGoogle Scholar
  73. 73.
    B.K. Berger, Phys. Rev. D11, 2770 (1975).MathSciNetADSGoogle Scholar
  74. 74.
    B.K. Berger, Phys. Rev. D12, 368 (1975).ADSCrossRefGoogle Scholar
  75. 75.
    M. Castagnino, A. Verbeure and R.A. Weder, Phys. Lett. A8, 99 (1974).Google Scholar
  76. 76.
    M. Castagnino, A. Verbeure and R.A. Weder, Nuovo Cimento 26B, 396 (1975).Google Scholar
  77. 77.
    C.W. Misner, Phys. Rev. D8, 3271 (1973).ADSGoogle Scholar
  78. 78.
    B. Mashoon, Phys. Rev. D8, 4297 (1973).MathSciNetADSGoogle Scholar
  79. 79.
    P. Chitre and J.B. Hartle, (in preparation).Google Scholar
  80. 80.
    R. Penrose, Groups and Topology, ed. by C. DeWitt and B.S. DeWitt ( Gordon and Breach Publishers, Inc., New York, 1964 ).Google Scholar
  81. 81.
    S. Deser, M.J. Duff and C.J. Isham, Nucl. Phys. B (in press).Google Scholar
  82. 82.
    P.C.W. Davies, S.A. Fulling and W.G. Unruh, Phys. Rev. D13, 2720 (1976).ADSGoogle Scholar
  83. 83.
    P.C.W. Davies and S.A. Fulling, “Quantum Vacuum Energy in Two-Dimensional Space-times” (to be published).Google Scholar
  84. 84.
    S.M. Christensen and S.A. Fulling, “Trace Anomalies and the Hawking Effect”, preprint.Google Scholar
  85. 85.
    L.P. Grishchuk, Zh. ETF 67, 825 (1974) [JETP 40, 409 (1975)].Google Scholar
  86. 86.
    L.P. Grishchuk, Nuovo Cim. Lett. 12, 60 (1975).MathSciNetADSCrossRefGoogle Scholar
  87. 87.
    R. Gowdy, Phys. Rev. Lett. 27, 826 (1971).ADSCrossRefGoogle Scholar
  88. 88.
    D.J. Raine and C.P. Winlove, Phys. Rev. D12, 946 (1975).ADSGoogle Scholar
  89. 89.
    P.S. Epstein, Proc. Nat. Acad. Sci. (U.S.) 16, 627 (1930).ADSMATHCrossRefGoogle Scholar
  90. 90.
    C. Eckart, Phys. Rev. 35, 1303 (1930).ADSCrossRefGoogle Scholar
  91. 91.
    R. Kulsrud, Phys. Rev. 106, 205 (1957).ADSMATHCrossRefGoogle Scholar
  92. 92.
    L. Parker, Phys. Rev. Lett. 28, 705 (1972).ADSCrossRefGoogle Scholar
  93. 93.
    B.L. Hu, Phys. Rev. D8, 1048 (1973).ADSCrossRefGoogle Scholar
  94. 94.
    B.L. Hu, Phys. Rev. D9, 3263 (1974).Google Scholar
  95. 95.
    B.L. Hu, S.A. Fulling and L. Parker, Phys. Rev. D8, 2377 (1973).ADSGoogle Scholar
  96. 96.
    The idea for the present proof is due to Sidney Coleman (private communication, 1972).Google Scholar
  97. 97.
    C.G. Callan, S. Coleman and R. Jackiw, Ann. Phys. (N.Y.) 59, 42 (1970) and S. Coleman and R. Jackiw, ibid. 67, 552 (1971).Google Scholar
  98. 98.
    H.B.G. Casimir, Kon. Ned. Akad. Wet. Proc. 51, 793 (1948).MATHGoogle Scholar
  99. 99.
    L. Ford, Phys. Rev. D11, 3370 (1975).ADSGoogle Scholar
  100. 100.
    L. Ford, “Quantum Vacuum Energy in a Closed Universe” (submitted for publication).Google Scholar
  101. 101.
    J.S. Dowker and R. Critchley, J. Phys. (London) A9, 535 (1976).MathSciNetADSGoogle Scholar
  102. 102.
    J.S. Dowker and R. Critchley, Phys. Rev. D13, 224; 3224 (1976).MathSciNetADSGoogle Scholar
  103. 103.
    S.W. Hawking, Commun. Math. Phys. 18, 301 (1970).MathSciNetADSMATHCrossRefGoogle Scholar
  104. 104.
    S. Bonazzola and F. Pacini, Phys. Rev. 148, 1269 (1966).ADSCrossRefGoogle Scholar
  105. 105.
    R. Ruffini and S. Bonazzola, Phys. Rev. 187, 1767 (1969).ADSCrossRefGoogle Scholar
  106. 106.
    B.S. DeWitt, Phys. Rev. 162, 1195, 1239 (1967).ADSCrossRefGoogle Scholar
  107. 107.
    R. Utiyama and B.S. DeWitt, J. Math. Phys. 3, 608 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  108. 108.
    S. Deser and P. van Nieuwenhuizen, Phys. Rev. Lett. 32, 245 (1974).ADSCrossRefGoogle Scholar
  109. 109.
    S. Deser and P. van Nieuwenhuizen, Phys. Rev. D10, 401 (1974).ADSGoogle Scholar
  110. 110.
    G. t’Hooft, Nucl. Phys. B62, 444 (1973).ADSCrossRefGoogle Scholar
  111. 111.
    G. t’Hooft and M. Veltman, Ann. Inst. H. Poincaré (in press).Google Scholar
  112. 112.
    L. Halpern, Ark. Fys. 34, 539 (1967).Google Scholar
  113. 113.
    E. Streeruwitz, Phys. Rev. D11, 3378 (1975).ADSGoogle Scholar
  114. 114.
    S.W. Hawking and G.F.R. Ellis, Large Scale Structure of Space-Time ( Cambridge University Press, London, 1973 ).MATHCrossRefGoogle Scholar
  115. 115.
    K.C. Jacobs, Ann. New York Acad. Sci. 262, 462 (1974); and private communication.Google Scholar
  116. 116.
    H. Epstein, V. Glaser and A. Jaffe, Nuovo Cim. 31, 1016 (1965).MathSciNetCrossRefGoogle Scholar
  117. 117.
    J.D. Bekenstein, Ann. Phys. (N.Y.) 82, 535 (1974).MathSciNetADSCrossRefGoogle Scholar
  118. 118.
    J.D. Bekenstein, Phys. Rev. D11, 2072 (1975).MathSciNetADSCrossRefGoogle Scholar
  119. 119.
    V. Ts. Gurovich, Dokl. Akad. Nauk. SSSR 195, 1300 (1970) [Sov. Phys. Dokl. 15, 1105 (1971)].Google Scholar
  120. 120.
    H. Nariai, Prog. Theor. Phys. (Kyoto) 46, 433 (1971).CrossRefGoogle Scholar
  121. 121.
    H. Nariai and K. Tomita, Prog. Theor. Phys. (Kyoto) 46, 776 (1971).ADSCrossRefGoogle Scholar
  122. 122.
    A. Trautman, Nature Pfiys. Sci. 242, 7 (1973). For a pair creation mechanism involving torsion see Ref. 168.Google Scholar
  123. 123.
    J.N. Bahcall and S. Frautschi, Ap. J. 170, L81 (1971).ADSCrossRefGoogle Scholar
  124. 124.
    J.A. Wheeler in Relativity, Groups, and Topology, ed. by B.S. DeWitt and C. DeWitt ( Gordon § Breach, New York, 1964 ).Google Scholar
  125. 125.
    C.W. Misner, Phys. Rev. 186, 1319, 1328 (1969).ADSMATHCrossRefGoogle Scholar
  126. 126.
    M. Ryan, Hamiltonian Cosmology ( Springer, Berlin, 1972 ).Google Scholar
  127. 127.
    E.P.T. Liang, Phys. Rev. D5, 2458 (1972).MathSciNetADSGoogle Scholar
  128. 128.
    F. Lund, Phys. Rev. D8, 3253 (1973).MathSciNetADSGoogle Scholar
  129. 129.
    C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation (W.H. Freeman and Co., San Francisco, 1973 ).Google Scholar
  130. 130.
    P. Candelas and D.J. Raine, Phys. Rev. D12, 965 (1975).ADSCrossRefGoogle Scholar
  131. 131.
    H.C. Ohanian, “On Particle Creation in Gravitational Collapse”, preprint.Google Scholar
  132. 132.
    R. Wald, Commun. Math. Phys. 45, 9 (1975).MathSciNetADSCrossRefGoogle Scholar
  133. 133.
    S.W. Hawking, “Fundamental Breakdown of Physics in Gravitational Collapse”, preprint.Google Scholar
  134. 134.
    L. Parker, Phys. Rev. D12, 1519 (1975).ADSCrossRefGoogle Scholar
  135. 135.
    J.D. Bekenstein, Phys. Rev. D12, 3077 (1975).MathSciNetADSGoogle Scholar
  136. 136.
    G.W. Gibbons and M.J. Perry, Phys. Rev. Lett. 36, 985 (1976).ADSCrossRefGoogle Scholar
  137. 137.
    W.H. Press and S.A. Teukolsky, Nature 238, 211 (1972).ADSCrossRefGoogle Scholar
  138. 138.
    A.A. Starobinsky, Zh. ETF 64, 48 (1973) [JETP 37, 28 (1973)].Google Scholar
  139. 139.
    A.A. Starobinsky and S.M. Churilov, Zh. ETF 65, 3 (1973) [JETP 38, 1 (1974)].Google Scholar
  140. 140.
    W.G. Unruh, Phys. Rev. Lett. 31, 1265 (1973).ADSCrossRefGoogle Scholar
  141. 141.
    G.W. Gibbons, Commun. Math. Phys. 44, 245 (1975).MathSciNetADSCrossRefGoogle Scholar
  142. 142.
    D.G. Boulware, Phys. Rev. D11, 1404 (1975).MathSciNetADSGoogle Scholar
  143. 143.
    D.G. Boulware, Phys. Rev. D13, 2169 (1976).ADSGoogle Scholar
  144. 144.
    P.C.W. Davies, Proc. Roy. Soc. A (in press).Google Scholar
  145. 145.
    U.H. Gerlach, Phys. Rev. D (in press).Google Scholar
  146. 146.
    T. Damour and R. Ruffini, Phys. Rev. D (in press).Google Scholar
  147. 147.
    R.H. Gowdy, “Future Cauchy Horizons, Topology Change, and Exploding Black Holes”, preprint.Google Scholar
  148. 148.
    F.J. Dyson, preprint.Google Scholar
  149. 149.
    V.P. Frolov, Usp. Fiz. Nauk 118, 473 (1976).CrossRefGoogle Scholar
  150. 150.
    V.P. Frolov, I.V. Volovich and V.A. Zagrebnov, “Quantum Particle Creation (Hawking Effect) By Non-Stationary Black Holes”, preprint-60.Google Scholar
  151. 151.
    I.D. Novikov, “Particle Creation and Vacuum Polarization By Black Holes”, preprint-268.Google Scholar
  152. 152.
    S.L. Adler, J. Lieberman, Y.J. Ng and H-S. Tsao, Phys. Rev. D14, 359 (1976).ADSCrossRefGoogle Scholar
  153. 153.
    S.L. Adler, Phys. Rev. D14, 379 (1976).ADSGoogle Scholar
  154. 154.
    H. Nariai and K. Tanabe, Prog, of Theor. Phys. 55, 1116 (1976).MathSciNetADSMATHCrossRefGoogle Scholar
  155. 155.
    H. Nariai, “Propagators for a Scalar Field in Some Bianchi- type I Universes”, preprint RRK76-7.Google Scholar
  156. 156.
    For a recent survey see G.T. Horowitz, Princeton University Senior Thesis.Google Scholar
  157. 157.
    P. Yodzis, H.J. Seifert and H. Müller zum Hagen, Commun. Math. Phys. 34, 135 (1973).Google Scholar
  158. 158.
    H. Müller zum Hagen, P. Yodzis and H.J. Seifert, Commun. Math. Phys. 37, 29 (1974).Google Scholar
  159. 159.
    L. Ford and L. Parker (in preparation).Google Scholar
  160. 160.
    C. Duncan, P. Esposito and L. Witten, “On a Static Axially Symmetrie Solution of the Einstein Equations,” Phys. Rev. D (to be published).Google Scholar
  161. 161.
    A. Ashtekar and A. Magnon, C. R. Acad. Sc., Paris, 280A, 741, 833 (1975).MathSciNetMATHGoogle Scholar
  162. 162.
    J. Friedman, “Ergoregion Instabilities” (to be published).Google Scholar
  163. 163.
    S.L. Adler, J. Lieberman and Y.J. Ng, “Regularization of the Stress-Energy Tensor for Vector and Scalar Particles Propagating in a General Background Metric,” Preprint COO-2220–83.Google Scholar
  164. 164.
    R. Wald, Phys. Rev. D13, 3176 (1976).ADSGoogle Scholar
  165. 165.
    J.D. Bekenstein and A. Meisels, “Einstein A and B Coefficients for a Black Hole,” preprint.Google Scholar
  166. 166.
    D.G. Boulware, Phys. Rev. D12, 350 (1975).MathSciNetADSGoogle Scholar
  167. 167.
    S.W. Hawking, Phys. Rev. Dl3, 191 (1976).Google Scholar
  168. 168.
    G.D. Kerlick, Phys. Rev. D12, 3004 (1975).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Leonard Parker
    • 1
  1. 1.Department of PhysicsUniversity of Wisconsin-MilwaukeeUSA

Personalised recommendations