Asymptotic Structure of Space-Time

  • Robert Geroch


Many physical theories have the feature that one can distinguish within the theory a certain class of models which one regards as representing “isolated systems”. In Newtonian gravitation, to take one example, one might define a solution as representing an isolated system if i) the mass density vanishes outside some compact set in the Euclidean 3-space, and ii) the Newtonian gravitational potential approaches zero in the limit far from that compact set. Normally, one would not expect that the models so distinguished will actually be realized in our World. Thus, with respect to the example above, one might expect that no matter how far one recedes from a given system in our own Universe one will encounter additional galaxies, whence i) will fail in our Universe. Nonetheless less, it turns out that the solutions so distinguished within a given theory can be of considerable physical interest, for one often encounters in the physical World systems to which these solutions are a good approximation, e.g., in the Newtonian example, our solar system. Indeed, one could perhaps argue for a much stronger statement:


Tensor Field Weyl Tensor Maxwell Field Asymptotic Structure Spatial Infinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Arnowitt, S. Deser, C. W. Misner, Phys. Rev. 118, 1100 (1960); 121, 1556 (1961); 122, 997 (1961).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    R. Geroch, J. Math. Phys. 13, 956 (1972).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    H. Bondi, M. G. J. Van Der Berg, A. W. K. Metzner, Proc. Roy. Soc. A269, 21 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    R. Sachs, Proc. Roy. Soc. A270, 193 (1962).Google Scholar
  5. 5.
    R. Penrose, Proc. Roy. Soc. A284, 159 (1965).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    L. Tamburino, J. Winicour, Phys. Rev. 150, 1039 (1966).ADSCrossRefGoogle Scholar
  7. 7.
    R. Sachs, Phys. Rev. 128, 2851 (1962).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J. Winicour, J. Math. Phys. 9, 861 (1968).ADSMATHCrossRefGoogle Scholar
  9. 9.
    J. Winicour, Phys. Rev. D3, 840 (1971).MathSciNetGoogle Scholar
  10. 10.
    D. Brill, S. Deser, Ann Phys. 50, 548 (1968).ADSCrossRefGoogle Scholar
  11. 11.
    B. Schmidt, M. Walker, P. Sommers, J. Gen. Rel. & Grav. 6, 489 (1975).ADSMATHCrossRefGoogle Scholar
  12. 12.
    E. T. Newman, R. Penrose, Proc. Roy. Soc. A305, 175 (1968),ADSCrossRefGoogle Scholar
  13. 13.
    D. Eardley, R. Sachs, J. Math. Phys. 14, 209 (1973).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Robert Geroch
    • 1
  1. 1.Department of PhysicsUniversity of ChicagoChicagoUSA

Personalised recommendations