The Status of Understanding Diffusion Controlled Solid State Sintering, Hot Pressing and Creep

  • R. L. Coble


Since Kuczynski’s pioneering work on the development of models to predict neck growth rates in sintering by diffusion, and his experimental efforts to test their applicability, there have been numerous authors who have contributed a plethora of models covering the different stages of the process with varying assumptions regarding the geometries, the diffusion fields, and the different atomic transport paths which contribute to the overall behavior (1–5). Ashby’s recent paper is a useful source to the past modelling work on single phase materials (6). The selection of the models cited there was based on simplicity and reasonable accuracy; both the initial and later stages of the process are covered there, although the importance of grain growth and atmosphere effects are not considered. (7,8). Experimental data on different materials, initial particle sizes, dopants, and temperature schedules have provided a relatively convincing view that for most of the range of variables, the sintering process is diffusion controlled.


Creep Rate Boundary Diffusion Lattice Diffusion Dopant Effect Diffusional Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. C. Kuczynski, Trans A.I.M.E., 185 (1949), 169.Google Scholar
  2. 2.
    T. L. Wilson and P. G. Shewmon, Trans. A.I.M.E.,236 (1966), 48.Google Scholar
  3. 3.
    F. Thummler and W. Thoma, Met. Rev., 115 (1969), 69.Google Scholar
  4. 4.
    R. L. Coble, J. App. Phys., 32 (1961), 787.CrossRefGoogle Scholar
  5. 5.
    D. L. Johnson, J. Am. Ceram. Soc., 53 (1970), 574.CrossRefGoogle Scholar
  6. 6.
    M. F. Ashby, Acta. Met., 22 (1974), 275.CrossRefGoogle Scholar
  7. 7.
    J. E. Burke, J. Am. Ceram Soc., 40 (1957), 80.CrossRefGoogle Scholar
  8. 8.
    R. L. Coble, J. Am. Ceram. Soc.,45 (1962), 123.CrossRefGoogle Scholar
  9. 9.
    R. M. Cannon and R. L. Coble in “Deformation of Ceramic Materials”, Plenum Press (1975), 61.Google Scholar
  10. 10.
    R. L. Coble, Review of Understanding Sintering and Related Phenomena, Vol. 6, Plenum Press, (1973).Google Scholar
  11. 11.
    M. Yan et al.,“Deformation of Ceramic Materials”, Plenum Press (1975), 549.Google Scholar
  12. 12.
    G. Hollenberg and R. S. Gordon, J. Am. Ceram. Soc., 56, (1973), 140.CrossRefGoogle Scholar
  13. 13.
    P. Lessing and R. S. Gordon, “Deformation of Ceramic Materials”, Plenum Press (1975), 271.Google Scholar
  14. 14.
    14., D. L. Johnson in “Ultrafine-Grain Ceramics”,Syracuse University Press (1970), 173.Google Scholar
  15. 15.
    R. L. Coble and T. K. Gupta, “Sintering and Related Phenomena” Gordon & Breach, N. Y. (1967), 123.Google Scholar
  16. 16.
    J. E. Blendell, P. K. Onorato and R. L. Coble unpublished research.Google Scholar
  17. 17.
    W. D. Kingery, J. Am. Ceram. Soc., 57, (1974), 1.CrossRefGoogle Scholar
  18. 18.
    D. W. Readey, J. Am. Ceram. Soc., 49, (1966), 366.CrossRefGoogle Scholar
  19. 19.
    W. D. Kingery and M. Berg, J. Appl. Phys., 26 (1955) 1205.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • R. L. Coble
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations