The Structural Degradation of Carbon Fibres in Nickel at Elevated Temperature

  • R. Warren
  • J. Wood


The interactions of various types of carbon fibre with coatings of nickel have been studied in a temperature range of 800–1300°C. For all fibre types, the presence of nickel catalyses the graphitization of the fibre structure. The graphitization is accompanied by the penetration of nickel to the centre of the fibre and by a drastic reduction in the fibre strength. It occurs rapidly above a characteristic temperature that is dependent on the fibre type and structure. The results are discussed with respect to possible graphitization mechanisms.


Carbon Fibre Fibre Type Fibre Strength Fibre Structure Nickel Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.W. Jackson and J.R. Marjoram, J. Matls. Sci., 5 (1970) 9.CrossRefGoogle Scholar
  2. 2.
    R.B. Barclay and W. Bonfield, J. Matls. Sci., 6 (1971) 1076.Google Scholar
  3. 3.
    S.V. Barnett, S.J. Harris and J.F. Weaver, Faraday Special Discussions of the Chem. Soc., No. 2 (1972) 144.Google Scholar
  4. 4.
    S. Sarian, J. Matls. Sci., 8 (1973) 251.CrossRefGoogle Scholar
  5. 5.
    I. Shiota and O. Watanabe, J. Jap. Inst. Met., 38 (1974) 794.Google Scholar
  6. 6.
    G.A. Cooper and R.M. Mayer, J. Matls. Sci., 6 (1971) 60.CrossRefGoogle Scholar
  7. 7.
    R.J. Defendorf and E.W. Tokarsky, Techn. Report AFML-TR-72–133 (1973).Google Scholar
  8. 8.
    F.S. Galasso and J. Pinto, Fibre Sci. and Techn. 2 (1970) 303.CrossRefGoogle Scholar
  9. 9.
    D.J. Thorne and A.J. Price, Fibre Sci. and Techn. 4 (1971) 9.Google Scholar
  10. 10.
    J.W. Dini and P.R. Coronado, Plating, 54 (1967) 385.Google Scholar
  11. 11.
    R. Warren and M. Carlsson, Proc. Vth Internat. Conf. Chemical Vapour Deposition (1975), Electrochemical Society, Princeton.Google Scholar
  12. 12.
    J.R. Wolfe, D.R. McKenzie and R.J. Borg, J. Appl. Phys., 36 (1965) 1906.Google Scholar
  13. 13.
    J.J. Lander, H.E. Kern and A.L. Beach, J. Appl. Chem., 20 1952 ) 1305.Google Scholar
  14. 14.
    H. Marsh and A.P. Warburton, J. Appl. Chem., 20 (1970) 133.CrossRefGoogle Scholar
  15. 15.
    S. Otani, A. Oya and J. Akagami, Carbon, 13 (1975) 353.CrossRefGoogle Scholar
  16. 16.
    A. Oya and S. Otani, Carbon, 13 (1975) 450.CrossRefGoogle Scholar
  17. 17.
    D.H. Davies, D.H. Everett and D.J. Taylor, Trans. Far. Soc. 67 (1971) 382.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • R. Warren
    • 1
  • J. Wood
    • 1
  1. 1.Department of Engineering Metals and Department of Inorganic ChemistryChalmers University of TechnologyGothenburgSweden

Personalised recommendations