Advertisement

Use of Invariant Modeling

  • W. S. Lewellen

Abstract

Previous chapters (7 and 8) have contained several different methods for calculating turbulent flow with varying degrees of complexity and probable computational success. Here I will describe the development and some applications of a method that has been pursued by Donaldson and his colleagues at A.R. A.P. (Aeronautical Research Associates of Princeton) for several years. The name of the model, an invariant model, can be interpreted in two ways. It refers to the constraints imposed on the choice of model terms required for closure. That is, any model term must exhibit the same tensor symmetry and dimensionality as the term it replaces. But the goal of the approach can also be described as an invariant model in the sense that our goal is a model that, although semiempirical, has no varying constants that must be determined for each new flow.

Keywords

Shear Layer Reynolds Stress Atmospheric Boundary Layer Planetary Boundary Layer Richardson Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradshaw, P., The understanding and prediction of turbulent flows, Aeronaut. J. 16, 403–418 (1972).Google Scholar
  2. 2.
    Mellor, G. L., and Herring, H. J., A survey of the mean turbulent field closure models, AIAA J. 11, 590–599 (1973).MATHCrossRefGoogle Scholar
  3. 3.
    Reynolds, W. C., Computation of turbulent flows—State of the art, 1970, report No. MD-27, Department of Mechanical Engineering, Stanford University, Stanford, California (1970).Google Scholar
  4. 4.
    Harlow, F. H. (ed.), Turbulence transport modeling, AIAA Selected Reprints Series, Vol. XIV, American Institute of Aeronautics and Astronautics, New York (1973).Google Scholar
  5. 5.
    Phillips, O. M., The Dynamics of the Upper Ocean, Cambridge University Press, Cambridge, England (1969).Google Scholar
  6. 6.
    Donaldson, C. du P., Atmospheric turbulence and the dispersal of atmospheric pollutants, AMS Workshop on Micrometeorology (D. A. Haugen, ed.), Science Press, Boston (1973), pp. 313–390.Google Scholar
  7. 7.
    Donaldson, C. du P., Calculation of turbulent shear flows for atmospheric and vortex motions, AIAA J. 10, 4–12 (1972).MATHCrossRefGoogle Scholar
  8. 8.
    Daly, B. J., and Harlow, F. H., Transport equations in turbulence, Phys. Fluids 13, 2634–2649 (1970).CrossRefGoogle Scholar
  9. 9.
    Wolfshtein, M., Naot, D., and Lin, A., Models of turbulence, Ben-Gurion University of the Negev report No. ME-746 (N) (1974).Google Scholar
  10. 10.
    Rotta, J. C., Statistische Theorie nichthomogener Tubulenz, Z. Phys. 129, 547–572 (1951).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Rotta, J. C., Turbulence Strömungen, Teubner Press, Stuttgart, West Germany (1972).Google Scholar
  12. 12.
    Crow, S. C., Viscoelastic properties of fine-grained incompressible turbulence, J. Fluid Mech. 33, 1–20 (1968).MATHCrossRefGoogle Scholar
  13. 13.
    Launder, B. E., and Spalding, D. B., Lectures in Mathematical Models of Turbulence, Academic Press, New York (1972).MATHGoogle Scholar
  14. 14.
    Rodi, W., The prediction of free-turbulent boundary layers by use of a two-equation model of turbulence, Ph.D. dissertation, Mechanical Engineering Department, Imperial College, London, December (1972).Google Scholar
  15. 15.
    Mellor, G. L., Analytic prediction of the properties of stratified planetary surface layers, J. Atmos. Sei. 30, 1061–1069 (1973).CrossRefGoogle Scholar
  16. 16.
    Launder, B. E., On the effects of gravitational field on the turbulent transport of heat and momentum, J. Fluid Mech. 67, 569–581 (1975).CrossRefGoogle Scholar
  17. 17.
    Naot, D., Shavit, A., and Wolfshtein, M., Two-point correlation model and the redistribu¬tion of Reynolds stresses, Phys. Fluids 16, 738–743 (1973).MATHCrossRefGoogle Scholar
  18. 18.
    Lumley, J. L., and Khajeh-Nouri, B., Computational modeling of turbulent transport, Advances in Geophysics, Vol. 18A, Academic Press, New York (1974), pp. 169–192.Google Scholar
  19. 19.
    Hanjalic, K., and Launder, B. E., A Reynolds stress model of turbulence and its application to thin shear flows, J. Fluid Mech. 52, 609–638 (1972).MATHCrossRefGoogle Scholar
  20. 20.
    Zeman, D., and Tennekes, H., A self-contained model for the pressure terms in the turbulent stress equations of the atmospheric boundary layer, unpublished manuscript (1975).Google Scholar
  21. 21.
    Varma, A. K., Second-order closure of turbulent reacting shear flows, Aeronautical Research Associates of Princeton report No. 235 (1975).Google Scholar
  22. 22.
    Lewellen, W. S., Teske, M., and Donaldson, C. du P., Application of turbulence model equations to axisymmetric wakes, AIAA J. 12, 620–625 (1974).CrossRefGoogle Scholar
  23. 23.
    Lewellen, W. S., Teske, M., and Donaldson, C. du P., Turbulence model of diurnal variations in the planetary boundary layer, Proceedings 1974 Heat Transfer and Fluid Mechanics Institute (L. R. Davies and R. E. Wilson, eds.), Stanford University Press, Stanford, California (1974), pp. 301–319.Google Scholar
  24. 24.
    Shir, C. C., A preliminary numerical study of atmospheric turbulent flows in the idealized planetary boundary layer, J. Atmos. Sei. 30, 1327–1339 (1973).CrossRefGoogle Scholar
  25. 25.
    Mellor, G. L., and Yamada, T., A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sei. 31, 1791–1806 (1974).CrossRefGoogle Scholar
  26. 26.
    Harlow, F. H., and Nakayama, P. I., Turbulence transport equations, Phys. Fluids 10, 2323–2332 (1967).MATHCrossRefGoogle Scholar
  27. 27.
    Wilcox, D. C., and Alber, I. E., A turbulence model for high speed flows, Proceedings 1972 Heat Transfer and Fluid Mechanics Institute, Stanford University Press, Stanford (1972), pp. 231–252.Google Scholar
  28. 28.
    Lewellen, W. S., Teske, M., Contiliano, R. M., Hilst, G. R., and Donaldson, C. du P., Invariant modeling of turbulent diffusion in the planetary boundary layer, Environmental Protection Agency report No. EPA-650/4-74-035 (1974).Google Scholar
  29. 29.
    Lewellen, W. S., Teske, M., and Donaldson, C. du P., Turbulent wakes in a stratified fluid, A.R.A.P. report No. 226 (1974).Google Scholar
  30. 30.
    Champagne, F. H., Harris, V. G., and Corrsin, S., Experiments on nearly homogeneous turbulent shear flow, J. Fluid Mech. 41, 81–139 (1970).CrossRefGoogle Scholar
  31. 31.
    Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F., Flux-profile relationships in the atmospheric surface layer, J. Atmos. Sci. 28, 181–189 (1971).CrossRefGoogle Scholar
  32. 32.
    Gadel-Hak, M., and Corrsin, S., Measurements of the nearly isotropic turbulence behind a uniform jet grid, /. Fluid Mech. 62, 115 - 143 (1974).CrossRefGoogle Scholar
  33. 33.
    Coles, D., Measurements in the boundary layer on a smooth flat plate in supersonic flow. 1: The problem of the turbulent boundary layer, JPL report No. 20–69 (1953).Google Scholar
  34. 34.
    Tennekes, H., and Lumley, J. L., A First Course in Turbulence, MIT Press, Cambridge, Massachusetts (1972).Google Scholar
  35. 35.
    Gibson, C. H., Stegen, G. R., and Williams, R. B., Statistics of the fine structure of turbulence velocity and temperature fields measured at high Reynolds number, J. Fluid Mech. 41, 153–167 (1970).CrossRefGoogle Scholar
  36. 36.
    Lewellen, W. S., and Teske, M. E., Prediction of the Monin-Obukhov similarity functions from an invariant model of turbulence, J. Atmos. Sci. 30, 1340–1345 (1973).CrossRefGoogle Scholar
  37. 37.
    Wyngaard, J. C., Coté, O. R., and Rao, K. S., Modeling the atmospheric boundary layer, Advances in Geophysics, Vol. 18A, Academic Press, New York (1974), pp. 193–212.Google Scholar
  38. 38.
    Wyngaard, J. C., and Coté, O. R., The evolution of a convective planetary boundary layer—A higher order-closure model study, Boundary Layer Meteorol. 7, 289–308 (1974).CrossRefGoogle Scholar
  39. 39.
    Wygnanski, I., and Fielder, H., Some measurements in the self-preserving jet, J. Fluid Mech. 38, 577–612 (1969).CrossRefGoogle Scholar
  40. 40.
    Wygnanski, I., and Fiedler, H., The two-dimensional mixing region, J. Fluid Mech. 41, 327–361 (1970).CrossRefGoogle Scholar
  41. 41.
    Birch, S. F., and Eggers, J. M., A critical review of the experimental data for developed free turbulent shear layers, in: Free Turbulent Shear Flows, Volume I: Conference Proceedings, NASA report No. SP-321, NASA Langley Research Center, Hampton, Virginia (1973).Google Scholar
  42. 42.
    Townsend, A. A., The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge, England (1956).Google Scholar
  43. 43.
    Thomas, R. M., Conditional sampling and other measurements in a plane turbulent wake, J. Fluid Mech. 57, 549–582 (1973).CrossRefGoogle Scholar
  44. 44.
    Chevray, R., The turbulent wake of a body of revolution, J. Basic Eng. 90, 275–284 (1968).CrossRefGoogle Scholar
  45. 45.
    Naudascher, E., Flow in the wake of self-propelled bodies and related sources of turbulence, J. Fluid Mech. 22, 625–656 (1965).MATHCrossRefGoogle Scholar
  46. 46.
    Klebanoff, P. S., Characteristics of turbulence in a boundary-layer with zero pressure gradient, NACA report No. 1247 (1955).Google Scholar
  47. 47.
    Bradley, E. F., A micrometerological study of velocity profiles and surface drag in the region modified by a change in surface roughness, Quart. J. R. Meteorol. Soc. 94, 361–379 (1968).CrossRefGoogle Scholar
  48. 48.
    Rao, K. S., Wyngaard, J. C., and Coté, O. R., The structure of the two-dimensional internal boundary layer over a sudden change of surface roughness, J. Atmos. Sci. 31, 738–746 (1974).CrossRefGoogle Scholar
  49. 49.
    Freymuth, P., and Uberoi, M. S., Structure of temperature fluctuations in the turbulent wake behind a heated cylinder, Phys. Fluids 14, 2574–2580 (1971).CrossRefGoogle Scholar
  50. 50.
    LaRue, J. C., and Libbey, P. A., Temperature fluctuations in the plane turbulent wake, Phys. Fluids 17, 1956–1967 (1974).CrossRefGoogle Scholar
  51. 51.
    Monin, A. S., and Obukhov, A. M., Dimensionless characteristics of turbulence in the atmospheric surface layer, Dokl. Akad. Nauk. SSSR 93, 223–226 (1953).Google Scholar
  52. 52.
    Wyngaard, J. G, Coté, O. R., and Izumi, Y., Local free convection, similarity and the budgets of shear stress and heat flux, J. Atmos. Sci. 28, 1171–1182 (1971).CrossRefGoogle Scholar
  53. 53.
    Kato, H., and Phillips, O. M., On the penetration of a turbulent layer into stratified fluid, J. Fluid Mech. 37, 643–656 (1969).CrossRefGoogle Scholar
  54. 54.
    Willis, G. E., and Deardorff, J. W., A laboratory model of the unstable planetary boundary layer, J. Atmos. Sci. 31, 1297–1307 (1974).CrossRefGoogle Scholar
  55. 55.
    Deardorff, J. W., Numerical investigation of neutral and unstable planetary boundary layers, J. Atmos. Sci. 29, 91–115 (1972).CrossRefGoogle Scholar
  56. 56.
    Donaldson, C. du P., The relationship between eddy transport and second-order closure models for stratified media and for vortices, in: Free-Turbulent Shear Flows, Volume I; Conference Proceedings, NASA report No. SP-321, NASA Langley Research Center, Hampton, Virginia (1973), pp. 233–255.Google Scholar
  57. 57.
    Donaldson, C. du P., and Bilanin, A. J., Vortex wakes of conventional aircraft, AGARDograph, No. 204 (1975).Google Scholar
  58. 58.
    Mellor, G. L., A comparative study of curved flow and density stratified flow, unpublished (1974).Google Scholar
  59. 59.
    Donaldson, C. du P., and Sullivan, R. D., An invariant second order closure model of the compressible turbulent boundary layer on a flat plate, Aeronautical Research Associates of Princeton report No. 178 (1972).Google Scholar
  60. 60.
    Varma, A. K., Beddini, R. A., Sullivan, R. D., and Donaldson, C. du P., Application of an invariant second-order closure model to compressible turbulent shear layers, AIAA paper No. 74–592 (1974).Google Scholar
  61. 61.
    Varma, A. K., Beddini, R. A., Sullivan, R. D., and Fishburne, E. S., Turbulent shear flows in laser nozzles and cavities, Air Force Office of Scientific Research report No. AFOSR- TR-74-1786 (1974).Google Scholar
  62. 62.
    Sullivan, R. D., A program to compute the behavior of a three-dimensional turbulent vortex, Aerospace Research Laboratories report No. ARL-TR-74-0009 (1973).Google Scholar
  63. 63.
    Hilst, G. R., The chemistry and diffusion of aircraft exhausts in the lower stratosphere during the first few hours after flyby, Aeronautical Research Associates of Princeton report No. 216 (1974).Google Scholar
  64. 64.
    Donaldson, C. du P., and Varma, A. K., Remarks on the construction of a second order closure description of turbulent reacting flows, in: Combustion Science and Technology, Vol. 13 (1976), pp. 55–78.Google Scholar
  65. 65.
    Bilanin, A. J., Snedeker, R. S., Sullivan, R. D., and Donaldson, C. du P., Final report on an experimental and theoretical study of aircraft vortices, Aeronautical Research Associates of Princeton report No. 238 (1975).Google Scholar
  66. 66.
    Wyngaard, J. C., Notes on surface layer turbulence, in: AMS Workshop on Micrometeorology ( D. A. Haugen, ed.), Science Press, Boston (1973), pp. 101–149.Google Scholar
  67. 67.
    Tennekes, H., Similarity laws and scale relations in planetary boundary layers, in: AMS Workshop in Micrometeorology ( D. A. Haugen, ed.), Science Press, Boston (1973), pp. 177–216.Google Scholar
  68. 68.
    Lewellen, W. S., Teske, M., and Donaldson, C. du P., Second-order turbulence modeling applied to momentumless wakes in stratified fluids, Aeronautical Research Associates of Princeton report No. 206 (1973).Google Scholar
  69. 69.
    Lin, J. T., and Pao, Y. H., Turbulent wake of a self-propelled slender body in stratified and nonstratified fluids: Analysis and flow visualizations, Flow Research Corp. report No. 11 (1973).Google Scholar
  70. 70.
    Lewellen, W. S., and Teske, M., Second-order closure modeling of diffusion in the atmospheric boundary layer, Boundary Layer Meteorol. 10, 69–90 (1976).CrossRefGoogle Scholar
  71. 71.
    Pasquill, F., Atmospheric Diffusion, Second Edition, Halstead Press, John Wiley and Sons, Inc., New York (1974).Google Scholar
  72. 72.
    Deardorff, J. W., and Willis, G. E., Physical Modeling of Diffusion in the Mixed Layer, in: Proceedings of the Symposium on Atmospheric Diffusion and Air Pollution, Santa Barbara (1974),American Meteorological Society, Boston, pp. 387–391.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • W. S. Lewellen
    • 1
  1. 1.Aeronautical Research Associates of Princeton, Inc.PrincetonUSA

Personalised recommendations