Advertisement

Kinetic Energy Methods

  • P. T. Harsha

Abstract

Problems in which turbulent flow fields dominate form a major portion of engineering fluid mechanics and heat transfer work. In principle, the calculation of these flows involves the solution of the time-dependent Navier-Stokes equations. But these equations cannot be solved without recourse to numerical methods, which must divide the flow field into a finite number of calculation points. The fundamental problem in the computation of turbulent flows then becomes the fact that turbulence introduces motions on a scale far smaller than the distances between the calculation points on the smallest practical numerical solution grid. Indeed, even if it were possible to compute the velocity field in a turbulent flow down to the smallest scale of motion of interest, another problem would be encountered. Because the velocity field in a turbulent flow fluctuates randomly, the variables of engineering interest in the flow are in general time or ensemble averages of the fluctuating quantities. In order to predict these averages, it would be necessary to repeat a detailed computation a great number of times, each with a slightly different initial condition, and ensemble-average the results. For these reasons, a direct assault on the problem of the computation of turbulent flows is impractical.

Keywords

Turbulent Kinetic Energy Eddy Viscosity Turbulent Shear Stress Turbulent Length Scale North Atlantic Treaty Organization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, G., and Roshko, A., The effect of density difference on the turbulent mixing layer, in: Turbulent Shear Flows, North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development, report No. CP-93 (1972).Google Scholar
  2. 2.
    Kovasznay, L. S. G., Turbulent shear flow, presented at Convegno Sulla Teoria Delia Turbulenza, Roma, Italia, April 26–29, 1970.Google Scholar
  3. 3.
    Liu, J. T. C., Developing large scale wavelike eddies and the near jet noise field, J. Fluid Mech. 62, 437–464 (1974).MATHCrossRefGoogle Scholar
  4. 4.
    Mellor, G. L., and Herring, H. J., A survey of the mean turbulent field closure models, AIAA J. 11, 590–599 (1973).MATHCrossRefGoogle Scholar
  5. 5.
    Prandtl, L., Bericht iiber Untersuchungen zue ausgebildeten Turbulenz, Z. Angew. Math. Mech. 5, 136–139 (1925).MATHGoogle Scholar
  6. 6.
    Prandtl, L., Bemerkungen zur Theorie der freien Turbulenz, Z. Angew. Math. Mech. 22, 241–243 (1942).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Schetz, J., Turbulent mixing of a jet in a coflowing stream, AIAA J. 6, 2008–2010 (1968).CrossRefGoogle Scholar
  8. 8.
    Tufts, L. W., and Smoot, L. D., A turbulent mixing coefficient correlation for coaxial jets with and without secondary flows, J. Spacecr. Rockets 8, 1183–1190 (1971).CrossRefGoogle Scholar
  9. 9.
    Zelazny, S. W., Morgenthaler, J. H., and Herendeen, D. L., Shear stress and turbulence intensity models for coflowing axisymmetric streams, AIAA J. 11, 1165–1173 (1973).CrossRefGoogle Scholar
  10. 10.
    Nee, V. W., and Kovasznay, L. S. G., Simple phenomenological theory of turbulent shear flows, Phys. Fluids 12, 473–484 (1969).MATHCrossRefGoogle Scholar
  11. 11.
    Saffman, P. G., A model for inhomogeneous turbulent flows, Proc. R. Soc. London, Series A 317, 417–433 (1970).MATHCrossRefGoogle Scholar
  12. 12.
    Bradshaw, P., Ferriss, D. H., and Atwell, N. P., Calculation of boundary-layer development using the turbulent energy equation, J. Fluid Mech. 28, 593–616 (1967).CrossRefGoogle Scholar
  13. 13.
    Saffman, P. G., and Wilcox, D. C., Turbulence—Model predictions for turbulent boundary layers, AIAA J. 12, 541–546 (1974).MATHCrossRefGoogle Scholar
  14. 14.
    Morel, T., Torda, T. P., and Bradshaw, P., Turbulent kinetic energy equation and free mixing, in: Free Turbulent Shear Flows, Vol. 1, Conference Proceedings, NASA report No. SP-321 (1973), pp. 549–573.Google Scholar
  15. 15.
    Morel, T., and Torda, T. P., Calculation of free turbulent mixing by the interaction approach, AIAA J. 12, 533–540 (1974).CrossRefGoogle Scholar
  16. 16.
    Glushko, G. S., Turbulent boundary layer on a flat plate in an incompressible fluid, Izv. Akad. Nauk SSSR Mekh. 4, 13–23 (1965) [English translation available from DDC as report No. AD 638 204 (1966), also NASA report No. TT-F-10,080].Google Scholar
  17. 17.
    Beckwith, I. E., and Bushnell, D. M., Calculation of mean and fluctuating properties of the incompressible turbulent boundary layer, in: Proceedings of the AFOSR-IFP-Stanford Conference, Vol. 1 ( S. J. Kline, M. V. Morkovin, G. Sovran, and D. J. Cockrell, eds.), Stanford University, Stanford, California (1969), pp. 275–299.Google Scholar
  18. 18.
    Mellor, G. L., and Herring, H. J., Two methods of calculating turbulent boundary layer behavior based on numerical solutions of the equations of motion, in: Proceedings of the AFOSR -IFF-Stanford Conference, Vol. 1 ( S. J. Kilne, M. V. Morkovin, G. Sovran, and D. J. Cockrell, eds.), Stanford University, Stanford, California (1969), pp. 331–345.Google Scholar
  19. 19.
    Ng, K. H., and Spalding, D. B., Turbulence model for boundary layers near walls, Phys. Fluids 15, 20–30 (1972).MATHCrossRefGoogle Scholar
  20. 20.
    Kolmogorov, A. N., The equations of turbulent motion in an incompressible fluid, Izv. Acad. Nauk SSSR Ser. Fiz. 6, 56–58 (1942) [English translation: report No. ON/6 Imperial College Department of Mechanical Engineering (1968)].Google Scholar
  21. 21.
    Prandtl, L., and Wieghardt, K., Über ein neues Formelsystem für die ausgebildete Turbulence, Nach. Akad. Wiss. Göttingen Math. Phys. Kl. 6–19 (1945).Google Scholar
  22. 22.
    Rotta, J. C., Statistische Theorie nichthomogener Turbulenz, Z. Phys. 129, 547–572 (1951) see also ibid. 131, 51–77 (1951).MathSciNetGoogle Scholar
  23. 23.
    Jones, W. P., and Launder, B. E., The calculation of low Reynolds number phenomena with a two-equation model of turbulence, Int. J. Heat Mass Transfer 16, 1119–1130 (1973).CrossRefGoogle Scholar
  24. 24.
    Rodi, W., The prediction of free turbulent boundary layers by use of a two-equation model of turbulence, Ph.D. dissertation, University of London (1972).Google Scholar
  25. 25.
    Rodi, W., and Spalding, D. B., A two-parameter model of turbulence and its application to free jets, Wärme Stoffübertrag. 3, 85–95 (1970).CrossRefGoogle Scholar
  26. 26.
    Launder, B. E., Morse, A., Rodi, W., and Spalding, D. B., Prediction of free shear flows—A comparison of the performance of six turbulence models, in: Free Turbulent Shear Flows, Vol. I, Conference Proceedings, NASA report No. SP-321 (1973), pp. 361–422.Google Scholar
  27. 27.
    Lee, S. C., and Harsha, P. T., Use of turbulent kinetic energy in free mixing studies, AIAA J. 8, 1026–1032 (1970).CrossRefGoogle Scholar
  28. 28.
    Harsha, P. T., Prediction of free turbulent mixing using a turbulent kinetic energy method, in: Free Turbulent Shear Flows, Vol. I, Conference Proceedings, NASA report No. SP-321 (1973),pp. 463–519.Google Scholar
  29. 29.
    Harsha, P. T., A general analysis of free turbulent mixing, AEDC report No. TR-73-177 (1974).Google Scholar
  30. 30.
    Patel, V. C., and Head, M. R., A simplified version of Bradshaw’s method for calculating two-dimensional turbulent boundary layers, Aeronaut. Quart. 21, 243–262 (1970).Google Scholar
  31. 31.
    Peters, C. E., and Phares, W. J., An integral turbulent kinetic energy analysis of free shear flows, in: Free Turbulent Shear Flows, Vol. I, Conference Proceedings, NASA report No. SP-321 (1973), pp. 577–624.Google Scholar
  32. 32.
    Chou, P. Y., On velocity correlations and the solution of the equations of turbulent fluctuation, Quart. J. Appl. Math. 3, 38–54 (1945).MATHGoogle Scholar
  33. 33.
    Rotta, J. C., Recent attempts to develop a generally applicable calculation method for turbulent shear flow layers, North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development, report No. CP-93 (1972).Google Scholar
  34. 34.
    Daly, B. J., and Harlow, F. H., Transport equations in turbulence, Phys. Fluids 13, 2634–2649 (1970).CrossRefGoogle Scholar
  35. 35.
    Donaldson, C. du P., A progress report on an attempt to construct an invariant model of turbulent shear flows, North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development, report No. CP-93 (1972).Google Scholar
  36. 36.
    Lewellen, W. S., Teske, M., and Donaldson, C. duP., Application of turbulence model equations to axisymmetric wakes, AIAA J. 12, 620–625 (1974).CrossRefGoogle Scholar
  37. 37.
    Hanjalic, K., and Launder, B. E., Fully developed asymmetric flow in a plane channel, J. Fluid Mech. 51, 301–335 (1972).CrossRefGoogle Scholar
  38. 38.
    Reynolds, W. C., Computation of turbulent flow, AIAA Paper No. 74-556, AIAA 7th Fluid and Plasmadynamics Conference, June 17–19, 1974.Google Scholar
  39. 39.
    Yen, J. T., Kinetic theory of turbulent flow, Phys. Fluids 15, 1728–1734 (1972).MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Nee, V. W., and Kovasznay, L. S. G., The calculation of the incompressible turbulent boundary layers by a simple theory, in: Proceedings of the AFOSR-IFP-Stanford Con-ference, Vol. 1 ( S. J. Kline, M. V. Morkovin, G. Sovran, and D. J. Cockrell, eds.), Stanford University, Stanford, California (1969), pp. 300–320.Google Scholar
  41. 41.
    Kline, S. J., Morkovin, M. V., Sovran, G., and Cockrell, D. J., eds., Proceedings of the AFOSR-IFP-Stanford Conference on Computation of Turbulent Boundary Layers, Ther- mosciences Div., Mechanical Engineering Department, Stanford University, Stanford, California (1969).Google Scholar
  42. 42.
    Nevzgljadov, V., A phenomenological theory of turbulence, J. Phys. USSR 9, 235–243 (1945).MathSciNetGoogle Scholar
  43. 43.
    Dryden, H. L., Recent advances in the mechanics of boundary layer flow, in: Advances in Applied Mechanics, Vol. 1 ( R. Von Mises and T. von Kärmän, eds.), Academic Press, New York (1948), pp. 1–40.CrossRefGoogle Scholar
  44. 44.
    Lee, S. C., Harsha, P. T., Auiler, J. E., and Lin, C. L., Heat mass and momentum transfer in free turbulent mixing, in: Proceedings of the 1972 Heat Transfer and Fluid Mechanics Institute ( R. B. Landis and G. J. Hardeman, eds.), Stanford University Press, Stanford, California (1972), pp. 215–230.Google Scholar
  45. 45.
    Mikatarian, R. R., and Benefield, J. W., Turbulence in chemical lasers, AIAA Paper No. 74–148, AIAA 12th Aerospace Sciences Meeting, January 30-February 1, 1974.Google Scholar
  46. 46.
    Rhodes, R. P., Harsha, P. T., and Peters, C. E., Turbulent kinetic energy analyses of hydrogen-air diffusion flames, Acta Astronaut. 1, 443–470 (1974).CrossRefGoogle Scholar
  47. 47.
    Runchal, A. K., and Spalding, D. B., Steady turbulent flow and heat transfer downstream of a sudden enlargement in a pipe of circular cross section, Wärme Stoffübertrag. 5, 31–38 (1972).CrossRefGoogle Scholar
  48. 48.
    Bradshaw, P., and Ferriss, D. H., Applications of a general method of calculating turbulent shear layers, J. Basic Eng. Trans. ASME 94, 345–352 (1972).CrossRefGoogle Scholar
  49. 49.
    Townsend, A. A., The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge, England (1956).Google Scholar
  50. 50.
    Bradshaw, P. and Ferriss, D. H., Calculation of boundary layer development using the turbulent energy equation: Compressible flow on adiabatic walls, J. Fluid Mech. 46, 83–110 (1971).Google Scholar
  51. 51.
    Bradshaw, P., and Ferriss, D. H., Calculation of boundary layer development using the turbulent energy equation: IV. Heat transfer with small temperature differences, report No. Aero 1271, National Physical Laboratory, Teddington (1968).Google Scholar
  52. 52.
    Bradshaw, P., Calculation of three-dimensional turbulent boundary layers, J. Fluid Mech. 46, 417–445 (1971).CrossRefGoogle Scholar
  53. 53.
    Bradshaw, P., Dean, R. B., and McEligot, D. M., Calculation of interacting turbulent shear layers—Duct flow, J. Fluids Eng. Trans. ASME 95, 214–220 (1973).CrossRefGoogle Scholar
  54. 54.
    Thompson, B. G. J., A new two parameter family of mean velocity profiles for incompressi¬ble turbulent boundary layers on smooth walls, R & M report No. 3463, Aeronautical Research Council (1965).Google Scholar
  55. 55.
    Bradshaw, P., The turbulence structure of equilibrium boundary layers, J. Fluid Mech. 29, 625–645 (1967).CrossRefGoogle Scholar
  56. 56.
    Harsha, P. T., and Lee, S. C., Correlation between turbulent shear stress and turbulent kineticGoogle Scholar
  57. 57.
    Free Turbulent Shear Flows, Vol. I, Conference Proceedings, Vol. II, Summary of Data, NASA, Langley Research Center, Hampton, Virginia, NASA report No. SP 321 (1973).Google Scholar
  58. 58.
    Wygnanski, I., and Fiedler, H., Some measurements in the self-preserving jet, J. Fluid Mech. 38, 577–612 (1969).CrossRefGoogle Scholar
  59. 59.
    Albertson, M. L., Dai, Y. B., Jensen, R. A., and Rouse, H., Diffusion of submerged jets, paper No. 2409, Trans. ASCE 115, 639–697 (1950).Google Scholar
  60. 60.
    Launder, B. E., and Spalding, D. B., Lectures in Mathematical Models of Turbulence, Academic Press, New York (1972).MATHGoogle Scholar
  61. 61.
    Jones, W. P., and Launder, B. E., The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transfer 15, 301–314 (1972).CrossRefGoogle Scholar
  62. 62.
    Lin, C. C., ed., Turbulent Flows and Heat Transfer, Princeton University Press, Princeton, New Jersey (1959), p. 132.MATHGoogle Scholar
  63. 63.
    Launder, B. E., and Spalding, D. B., The numerical computations of turbulent flows, report No. HTS/73/2, Imperial College, Department of Mechanical Engineering (1973).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • P. T. Harsha
    • 1
  1. 1.R & D AssociatesSanta MonicaUSA

Personalised recommendations