Turbulence Processes and Simple Closure Schemes

  • R. G. Deissler


The origin of the closure problem in turbulence was discussed in some of the earlier papers in this volume. Herein we briefly review the closure problem and introduce simple closure schemes in order to obtain solutions for some simple flows. These solutions will be used to illustrate the processes occurring in turbulence. Closure by specification of initial conditions will then be considered. Finally, practical closure schemes for more complicated flows, such as boundary layers and pipe flows, will be discussed.


Turbulent Energy Reynolds Shear Stress Final Period Homogeneous Turbulence Vortex Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batchelor, G. K., The Theory of Homogeneous Turbulence, Cambridge University Press, New York (1953).MATHGoogle Scholar
  2. 2.
    Heisenberg, W., Zur statistischen Theorie der Turbulenz, Z. Phys. 124, 628–657 (1948).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Kovasznay, L. S. G., Spectrum of locally isotropic turbulence, J. Aeronaut. Sei. 15, 745–753 (1948).MathSciNetGoogle Scholar
  4. 4.
    Kraichnan, R. H., Lagrangian-history closure approximation for turbulence, Phys. Fluids 8, 575–598 (1965).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Deissler, R. G., On the decay of homogeneous turbulence before the final period, Phys. Fluids 1, 111–121 (1958).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Deissler, R. G., A theory of decaying homogeneous turbulence, Phys. Fluids 3, 176–187 (1960).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Deissler, R. G., Decay of homogeneous turbulence from a given initial state, Phys. Fluids 14, 1629–1638 (1971).MATHCrossRefGoogle Scholar
  8. 8.
    Deissler, R. G., Further comparison of theory and experiment for decay of homogeneous turbulence, Phys. Fluids 15, 1353 - 1355 (1972).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Deissler, R. G., Remarks on the decay of homogeneous turbulence from a given state, Phys. Fluids 17, 652–653 (1974).CrossRefGoogle Scholar
  10. 10.
    Deissler, R. G., Effects of inhomogeneity and of shear flow in weak turbulent fields, Phys. Fluids 4, 1187–1198 (1961).MathSciNetCrossRefGoogle Scholar
  11. 11.
    Deissler, R. G., Comparison of theory and experiment for homogeneous turbulence with shear, Phys. Fluids 18, 1237–1240 (1975).MATHCrossRefGoogle Scholar
  12. 12.
    Deissler, R. G., Growth of turbulence in the presence of shear, Phys. Fluids 15, 1918–1920 (1972).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Deissler, R. G., Problem of steady-state shear-flow turbulence, Phys. Fluids 8, 391–398 (1965).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Deissler, R. G., Evolution of a moderately short turbulent boundary layer in a severe pressure gradient, J. Fluid Mech. 64, 763–774 (1974).CrossRefGoogle Scholar
  15. 15.
    Deissler, R. G., Evolution of the heat transfer and flow in moderately short turbulent boundary layers in severe pressure gradients, Int. J. Heat Mass Transfer 17, 1079–1085 (1974).CrossRefGoogle Scholar
  16. 16.
    Hinze, J. O., Turbulence, McGraw-Hill Book Company, New York (1959).Google Scholar
  17. 17.
    Deissler, R. G., Turbulent heat transfer and friction in smooth passages, in: Turbulent Flows and Heat Transfer (C. C. Lin, ed.), Princeton University Press, Princeton, New Jersey, 288–313 (1959).Google Scholar
  18. 18.
    Deissler, R. G., and Loeffler, A. L., Analysis of turbulent flow and heat transfer on a flat plate at high Mach numbers with variable fluid properties, NASA report No. TR-17, Washington, D. C. (1959).Google Scholar
  19. 19.
    Van Driest, E. R., On turbulent flow near a wall, J. Aeronaut. Sei. 23, 1007–1011 (1956).MATHGoogle Scholar
  20. 20.
    Moretti, P. M., and Kays, W. M., Heat transfer to a turbulent boundary layer with varying free-stream velocity and varying surface temperature—An experimental study, Int. J. Heat Mass Transfer 8, 1187–1202 (1965).CrossRefGoogle Scholar
  21. 21.
    Patel, V. C., and Head, M. R., Reversion of turbulent to laminar flow, J. Fluid Mech. 34, 371–392 (1968).CrossRefGoogle Scholar
  22. 22.
    Champagne, F. H., Harris, V. G., and Corrsin, S., Experiments on nearly homogeneous turbulent shear flow, J. Fluid Mech. 41, 81–139 (1970).CrossRefGoogle Scholar
  23. 23.
    Ling, S. C., and Huang, T. T., Decay of weak turbulence, Phys. Fluids 13, 2912–2924 (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • R. G. Deissler
    • 1
  1. 1.Lewis Research CenterNational Aeronautics and Space AdministrationClevelandUSA

Personalised recommendations