Transition is the most complex problem of fluid mechanics, and perhaps of modern physics. A century of effort has produced very limited insight and only a few guidelines for the benefit of design engineers. Transition is the process by which a laminar flow becomes turbulent. While the definition of the word “turbulent” still leaves some uncertainty, there seems to be less doubt about what we call “transition.” In a laminar flow, it is reasonable to try to describe the motion by specifying the velocity at any point and any time. The theoretician will use analytic expressions, the numerologist will interpolate between values known at certain grid points. In a turbulent flow, this objective becomes meaningless. A full description of the flow would be of little use, since interest centers on averaged quantities, and especially on the Reynolds stress. Thus, statistical information becomes all-important.


Shear Layer Vortex Ring Velocity Fluctuation Eddy Viscosity Initial Perturbation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hama, F. R., Streaklines in a perturbed flow, Phys. Fluids 5, 644–650 (1962).MATHCrossRefGoogle Scholar
  2. 2.
    Helmholtz, H. von, Uber discontinuierliche Flüssigkeitsbewegungen, Akad. Wiss. Berlin April, 215 (1868).Google Scholar
  3. 3.
    Rosenhead, L., The formation of vortices from a surface of discontinuity, Proc. R. Soc. London, A 134, 170–192 (1932).Google Scholar
  4. 4.
    Betchov, R., and Criminale, W. O., Stability of Parallel Flow, Academic Press, New York (1967).Google Scholar
  5. 5.
    Betchov, R., and Szewezyk, A., Stability of a shear layer between parallel streams, Phys. Fluids 6, 1391–1396 (1963).MATHCrossRefGoogle Scholar
  6. 6.
    Tatsumi, T., and Gotoh, D., The stability of free boundary layers between two uniform streams, J. Fluid Mech. 7, 433–441 (1960).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Gotoh, D., The damping of the large wave number disturbances in a free boundary layer flow, J. Phys. Soc. Japan 20, 164–169 (1965).CrossRefGoogle Scholar
  8. 8.
    Landau, L. D., Oscillation of an electron plasma, Sov. Phys.—JETP 10 (1946).Google Scholar
  9. 9.
    Stix, T. H., The Theory of Plasma Waves, McGraw-Hill, New York (1962).MATHGoogle Scholar
  10. 10.
    Klebanoff, P. S., Tidstrom, K. D., and Sargent, L. M., The three-dimensional nature of boundary layer instability, J. Fluid Mech. 12, 1–34 (1962).MATHCrossRefGoogle Scholar
  11. 11.
    Emmons, H. W., The laminar-turbulent transiton in a boundary layer—Part I, J. Aeronaut. Sei. 18, 490–498 (1951).MathSciNetMATHGoogle Scholar
  12. 12.
    Landau, L. D., and Lifshitz, E. M., Theoretical Physics, Vol. 6: Fluid Mechanics, Addison- Wesley Publishing Co., Reading, Massachusetts (1959).Google Scholar
  13. 13.
    Squire, H. B., On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls, Proc. R. Soc. London, A 142, 621–628 (1933).MATHCrossRefGoogle Scholar
  14. 14.
    Criminale, W. O., and Kovasznay, L. S. G., The growth of localized disturbances in a laminar boundary layer, J. Fluid Mech. 14, 59–80 (1962).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gortier, H., Über den Einfluss der Wandkrümmung auf die Entstehung der Turbulenz, Z. Angew. Math. Mech. 20, 138–147 (1940).Google Scholar
  16. 16.
    Benney, D. J., and Lin, C. C., On the secondary motion induced by oscillations in a shear flow, Phys. Fluids 3, 656–657 (1960).CrossRefGoogle Scholar
  17. 17.
    Tani, I., Boundary layer transition, in: Annual Review of Fluid Mechanics, Vol. 1, W. R. Sears and M. Van Dyke (eds.), Annual Reviews, Inc., Palo Alto, California (1969), pp. 169–196.Google Scholar
  18. 18.
    Kovasznay, L. S. G., Komoda, H., and Vasudeva, B. R., Detailed flow field in transition, in: Proceedings of the 1962 Heat Transfer and Fluid Mechanics Institute ( F. E. Ehlers, J. J. Kauzlarich, C. A. Sleicher, and R. E. Street, eds.), Stanford University Press, Stanford, California (1962), pp. 1–26.Google Scholar
  19. 19.
    Smith, A. M. O., Transition, pressure gradient and stability theory, Proceedings of the Ninth International Congress on Applied Mechanics, Published by the Congress (1956).Google Scholar
  20. 20.
    Betchov, R., Thermal Agitation and Turbulence, in: Proceedings of the Second Interna-tional Symposium on Rarefied Gas Dynamics ( L. Talbot, ed.), Academic Press, New York (1961), pp. 307–21.Google Scholar
  21. 21.
    Tsuge, S., Approach to the origin of turbulence on the basis of two-point kinetic theory, Phys. Fluids 17, 22–23 (1974).MATHCrossRefGoogle Scholar
  22. 22.
    Hama, F. R., Progressive deformation of a perturbed line vortex filament, Phys. Fluids 6, 526–534 (1963).MATHCrossRefGoogle Scholar
  23. 23.
    Betchov, R., On the curvature and torsion of an isolated vortex filament, J. Fluid Mech. 22, 471–479 (1965).MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Hasimoto, H., A soliton on a vortex filament, J. Fluid Mech. 51, 477–485 (1972).MATHCrossRefGoogle Scholar
  25. 25.
    Leonard, A., Numerical simulation of interacting three-dimensional vortex filaments, Proceedings of the Fourth International Conference on Numerical Methods in Fluid Dynamics (R. D. Richtmeyer, ed.), Springer, Berlin (1975).Google Scholar
  26. 26.
    Mack, L. M., Boundary layer stability theory, Jet Propulsion Laboratory, California, Institute of Technology report No. 900-277 (1969).Google Scholar
  27. 27.
    Morkovin, M., On the many faces of transition, in: Symposium on Viscous Drag Reduction ( S. Wells, ed.), Plenum Press, New York (1969), pp. 1–31.Google Scholar
  28. 28.
    Nee, V. W., and Kovasznay, L. S. G., Simple phenomenological theory of turbulent shear flows, Phys. Fluids 12, 473–484 (1969).MATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • R. Betchov
    • 1
  1. 1.The University of Notre DameNotre DameUSA

Personalised recommendations