Advertisement

An Introduction to Turbulence Phenomena

  • Trevor H. Moulden

Abstract

Investigations into turbulence phenomena have produced an unresolved dichotomy.

Keywords

Shear Layer Reynolds Stress Turbulent Boundary Layer Pressure Fluctuation Reynolds Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jenkins, G. M., and Watts, D. G., Spectral Analysis and Its Applications, Holden-Day, San Francisco, California (1968).Google Scholar
  2. 2.
    Gartshore, I. S., An experimental examination of the large-eddy equilibrium hypotheses, J. Fluid Mech. 24, 89–98 (1966).CrossRefGoogle Scholar
  3. 3.
    Kline, S. J., Reynolds, W. C., Schraub, F. A., and Runstadler, P. W., The structure of turbulent boundary layers, J. Fluid Mech. 30, 741–773 (1967).CrossRefGoogle Scholar
  4. 4.
    Kim, H. T., Kline, S. J., and Reynolds, W. C., The production of turbulence near a smooth wall in a turbulent boundary layer, J. Fluid Mech. 50, 133–160 (1971).CrossRefGoogle Scholar
  5. 5.
    Corino, E. R., and Brodkey, R. S., A visual investigation of the wall region in turbulent flow, J. Fluid Mech. 37, 1–30 (1969).CrossRefGoogle Scholar
  6. 6.
    Willmarth, W. W., and Lu, S. S., Structure of the Reynolds stress near the wall, J. Fluid Mech. 55, 65–92 (1972).CrossRefGoogle Scholar
  7. 7.
    Gupta, A. K., Laufer, J., and Kaplan, R. E., Spatial structure in the viscous sublayer, J. Fluid Mech. 50, 493–512 (1971).CrossRefGoogle Scholar
  8. 8.
    Fernholz, H., Three-dimensional disturbances in a two-dimensional incompressible turbulent boundary layer, Aeronautical Research Council, London, R and M No. 3368 (1962).Google Scholar
  9. 9.
    Coles, D., The law of the wake in the turbulent boundary layer, J. Fluid Mech. 1, 191–226 (1956).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Fiedler, H., and Head, M. R., Intermittency measurements in the turbulent boundary layer, J. Fluid Mech. 25, 719–735 (1966).CrossRefGoogle Scholar
  11. 11.
    Kovasznay, L. S. G., Kibens, V., and Blackwelder, R. F., Large scale motion in the intermittent region of a turbulent boundary layer, J. Fluid Mech. 41, 283–326 (1970).CrossRefGoogle Scholar
  12. 12.
    Antonia, R. A., Conditionally sampled measurements near the outer edge of a turbulent boundary layer, J. Fluid Mech. 56, 1–18 (1972).CrossRefGoogle Scholar
  13. 13.
    Laufer, J., New trends in experimental turbulence research, in: Annual Review of Fluid Mechanics, Vol. 7 ( M. Van Dyke, W. G. Vincenti, and J. V. Wehausen, eds.), Annual Review, Inc., Palo Alto, California (1975), pp. 307–326.Google Scholar
  14. 14.
    Davies, P. O. A. L., and Yule, A. J., Coherent structures in turbulence, J. Fluid Mech. 69, 513–537 (1975).MATHCrossRefGoogle Scholar
  15. 15.
    Tennekes, H., and Lumley, J. L., A First Course in Turbulence, MIT Press, Cambridge, Massachusetts (1972).Google Scholar
  16. 16.
    Shinbrot, M., Lectures in Fluid Mechanics, Gordon and Breach, New York (1973).Google Scholar
  17. 17.
    Meyer, R. E., Introduction to Mathematical Fluid Dynamics, Wiley-Interscience, New York (1971).MATHGoogle Scholar
  18. 18.
    Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York (1963).MATHGoogle Scholar
  19. 19.
    Ladyzhenskaya, O. A., Mathematical analysis of Navier-Stokes equations for incompressible liquids, in: Annual Review of Fluid Mechanics, Vol. 7 ( M. Van Dyke, W. G. Vincenti, and J. V. Wehausen, eds.), Annual Reviews, Inc., Palo Alto, California (1975), pp. 249–272.Google Scholar
  20. 20.
    Sedov, L. I., A Course in Continuum Mechanics, Vols. 1–4, Wolters-Noordhoff, Groningen, The Netherlands (1971).Google Scholar
  21. 21.
    Stewart, R. W., Triple velocity correlations in isotropic turbulence, Proc. Cambridge Phil. Soc. 47, 146–157 (1951).MATHGoogle Scholar
  22. 22.
    Laufer, J., The structure of turbulence in fully developed pipe flow, NACA report No. TR 1174(1954).Google Scholar
  23. 23.
    Lilley, G. M., and Hodgson, T. H., On surface pressure fluctuations in turbulent boundary layers, AGARD report No. 276, North Atlantic Treaty Organization, Paris (1960).Google Scholar
  24. 24.
    Willmarth, W. W., and Wooldridge, C. E., Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer, J. Fluid Mech. 14, 187–210 (1962).MATHCrossRefGoogle Scholar
  25. 25.
    Wills, J. A. B., Measurement of the wave-number/phase velocity spectrum of wall pressure beneath a turbulent boundary layer, J. Fluid Mech. 45, 65–90 (1971).CrossRefGoogle Scholar
  26. 26.
    Willmarth, W. W., Pressure fluctuations beneath turbulent boundary layers, in: Annual Review of Fluid Mechanics, Vol. 7 ( M. Van Dyke, G. W. Vincenti, and J. V. Wehausen, eds.), Annual Reviews, Inc., Palo Alto, California (1975), pp. 13–38.Google Scholar
  27. 27.
    Reynolds, O., On the dynamical theory of incompressible viscous fluids and the determina¬tion of the criterion, Phil. Trans. R. Soc. 186, 123–164 (1883).Google Scholar
  28. 28.
    Monin, A. S., and Yaglom, A. M., Statistical Fluid Mechanics—Mechanics of Turbulence, Vol. 1, MIT Press, Cambridge, Massachusetts (1971).Google Scholar
  29. 29.
    Kaplan, R. E., and Laufer, J., The intermittently turbulent region of the boundary layer, in: Applied Mechanics (Proceedings of the 12th International Congress of Applied Mechanics) ( M. Hetenyi and W. G. Vincenti, eds.), Springer-Verlag, Berlin (1969).Google Scholar
  30. 30.
    Panchev, S., Random Functions and Turbulence, Pergamon Press, Oxford (1971).MATHGoogle Scholar
  31. 31.
    Von Neumann, J., Proof of the quasi-ergodic hypothesis, Proc. Natl. Acad. Sci. USA 18, 70–82 (1932).CrossRefGoogle Scholar
  32. 32.
    Birkhofi, G. D., Proof of the ergodic theorem, Proc. Natl. Acad. Sci. USA 17, 656–660 (1931).CrossRefGoogle Scholar
  33. 33.
    Hinze, J. O., Turbulence: An Introduction to its Mechanism and Theory, McGraw-Hill Book Co., New York (1959).Google Scholar
  34. 34.
    Launder, B. E., and Spalding, D. B., Lectures in Mathematical Models of Turbulence, Academic Press, New York (1972).MATHGoogle Scholar
  35. 35.
    Mellor, G. L., and Yamada, T., A hierarchy of turbulent closure models for planetary boundary layers, J. Atmos. Sci. 31, 1791–1806 (1974).CrossRefGoogle Scholar
  36. 36.
    Bradshaw, P., The understanding and prediction of turbulent flow, Aeronaut. J. 76, 403–418 (1972).Google Scholar
  37. 37.
    Mellor, G. L., and Herring, H. J., A survey of the mean turbulent field closure models, AIAA J. 11, 590–599 (1973).Google Scholar
  38. 38.
    Emmons, H. W., Critique of numerical modeling of fluid mechanics phenomena, in: Annual Review of Fluid Mechanics, Vol. 2 ( M. Van Dyke, W. G. Vincenti, and J. V. Wehausen, eds.), Annual Reviews, Inc., Palo Alto, California (1970), pp. 15–36.Google Scholar
  39. 39.
    Orszag, S. A., and Israeli, M., Numerical simulation of viscous incompressible flows, in: Annual Review of Fluid Mechanics, Vol. 6 ( M. Van Dyke, W. G. Vincenti, and J. V. Wehausen, eds.), Annual Reviews, Inc., Palo Alto, California (1974), pp. 281–318.Google Scholar
  40. 40.
    Nash, J. F., and Patel, V. C., Three-Dimensional Turbulent Boundary Layers, SBC Technical Books, Atlanta, Georgia (1972).Google Scholar
  41. 41.
    Van Dyke, M., Perturbation Methods in Fluid Mechanics, Academic Press, New York (1964).MATHGoogle Scholar
  42. 42.
    Phillips, O. M., The maintenance of Reynolds stress in turbulent shear flow, J. Fluid Mech. 27, 131–144 (1967).Google Scholar
  43. 43.
    Mellor, G. L., The large Reynolds number asymptotic theory of turbulent boundary layers, Int. J. Eng. Sci. 10, 851–874 (1972).MathSciNetCrossRefGoogle Scholar
  44. 44.
    Laufer, J., Aerodynamic noise in supersonic wind tunnels, J. Aerosp. Sci. 28, 685–692 (1961).MATHGoogle Scholar
  45. 45.
    Morse, P. M., and Ingard, K. U., Theoretical Acoustics, McGraw-Hill Book Co., New York (1968).Google Scholar
  46. 46.
    Yajnik, K. S., Asymptotic theory of turbulent shear flows, J. Fluid Mech. 42, 411–427 (1970).MATHCrossRefGoogle Scholar
  47. 47.
    Deardorff, J. W., The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence, J. Fluids Eng. 95, 429–438 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Trevor H. Moulden
    • 1
  1. 1.The University of Tennessee Space InstituteTullahomaUSA

Personalised recommendations