Laboratory Instrumentation in Turbulence Measurements

  • V. A. Sandborn


Measurements of turbulence can arise in a great number of fluid flow problems. The possible range of turbulent fluctuations can vary over many decades of time, amplitude, and/or space scales. Some ideas of the vast time scales that are associated with “turbulent” motion can be gained by considering Figure 11.1.


Mach Number Wall Shear Stress Turbulent Boundary Layer Velocity Fluctuation Supersonic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lumley, J. L., and Panofsky, H. A., The Structure of Atmospheric Turbulence, Interscience Publishers, New York (1964).Google Scholar
  2. 2.
    Sandborn, V. A., and Slogar, R. J., Study of the momentum distribution of turbulent boundary layers in adverse pressure gradients, NACA Report No. TN 3264 (1955).Google Scholar
  3. 3.
    Sandborn, V. A., Resistance Temperature Transducers, Metrology Press, Fort Collins, Colorado (1972).Google Scholar
  4. 4.
    Schubauer, G. B., and Burgers, J. M., in: Advances in Hot Wire Anemometry ( W. L. Melnik and J. R. Weske, eds.), Proceedings, International Symposium on Hot Wire Anemometry, University of Maryland (1967).Google Scholar
  5. 5.
    Ling, S. C., and Hubbard, P. G., The hot-film anemometer—A new device for fluid mechanics research, /. Aerosp. ScL 23, 890–891 (1956).Google Scholar
  6. 6.
    Lowell, H. H., and Patton, N., Response of homogenous and two-material laminated cylinders to sinusoidal environmental temperature change, with applications to hot-wire anemometry and thermocouple pyrometry, NACA report No. TN-3514 (1955).Google Scholar
  7. 7.
    Schubauer, G. B., and Klebanoff, P. S., Theory and application of hot wire instruments in the investigation of turbulent boundary layers, NACA report No. WR W-86 (1946).Google Scholar
  8. 8.
    Richardson, E. V., McQuivey, R. S., Sandborn, V. A., and Jog, P. M., Comparison between hot film and hot wire measurements of turbulence, in: Proceedings of the Tenth Midwestern Mechanics Conference, Developments in Mechanics, Vol. 4 ( J. E. Cermak and J. R. Goodman, eds.), Johnson Publishing Company, Boulder, Colorado (1968), pp. 1213–1223.Google Scholar
  9. 9.
    McQuivey, R. S., Turbulence in a hydrodynamically rough and smooth open channel flow, Ph.D. dissertation, Colorado State University (1967). See also Richardson, E. V., and McQuivey, R. S., Measurements of turbulence in water, ASCE J. Hydraulics 95, 411–430 (1968).Google Scholar
  10. 10.
    Bellhouse, B. J., and Rasmussen, C. G., Low frequency characteristics of hot-film anemometers, DISA Information No. 6 (1968).Google Scholar
  11. 11.
    Friehe, C. A., and Schwarz, W. H., The use of Pitot static tubes and hot film anemometers in dilute polymer solutions, in: Viscous Drag Reduction ( C. S. Wells, ed.), Plenum Press, New York (1969), pp. 281–296.Google Scholar
  12. 12.
    Spencer, 8. W., and Jones, B. G., Turbulence measurements with the split film anemometer probe, in: Proceedings of Symposium on Turbulence in Liquids, University of Missouri at Rolla (1971).Google Scholar
  13. 13.
    Fage, A., and Townend, H. C. H., An examination of turbulent flow with an ultramicros-cope, Proc. R. Soc. London A135, 656–677 (1932).CrossRefGoogle Scholar
  14. 14.
    Bourot, J. M., Chromophotography des champs aerodynamiques, Publications Scienti- fiques et Techniques, No. 226, Ministere Air, Paris, France (1949).Google Scholar
  15. 15.
    Gee, T. H., An Introduction to the Laser, von Karman Institute for Fluid Dynamics Lecture Series No. 39: Laser Technology in Aerodynamic Measurements (1971).Google Scholar
  16. 16.
    Goldstein, R. J., and Kreid, D. R., Measurement of laminar flow development in a square duct using a laser-Doppler flow meter, J. Appl. Mech. 34, 813–818 (1967).CrossRefGoogle Scholar
  17. 17.
    Schubauer, G. B., A Turbulence indicator utilizing the diffusion of heat, NACA report No. TR-524 (1935).Google Scholar
  18. 18.
    Taylor, G. I., Statistical theory of turbulence—IV, Diffusion in a turbulent air stream, Proc. R. Soc. London A151, 465–478 (1935).CrossRefGoogle Scholar
  19. 19.
    Hagist, W. H., Measurements of turbulent intensity by a diffusion method (unpublished work done at Colorado State University) (1968).Google Scholar
  20. 20.
    Townend, H. C. H., Statistical measurements of turbulence in the flow of air through a pipe, Proc. R. Soc. London A145, 180–211 (1934).CrossRefGoogle Scholar
  21. 21.
    Cady, W. M., Velocity measurements by illuminated or luminous particles, in: Physical Measurements in Gas Dynamics and Combustion (R. W. Ladenburg, B. Lewis, R. N. Pease, and H. S. Taylor, eds), High Speed Aerodynamics and Jet Propulsion, Vol. 9, Princeton University Press, Princeton, New Jersey (1954).Google Scholar
  22. 22.
    Clutter, E. W., Smith, A. M. O., and Braxier, J. G., Techniques of flow visualization using water as the working medium, Douglas Aircraft Company report No. ES 29075 (1959). Also Clutter, D. W., and Smith, A. M. O., Flow visualization by electrolysis of water, Aerosp. Eng. 20, 24–27 (1961).Google Scholar
  23. 23.
    Schraub, F. A., Kline, S. J., Henry, J., Runstadler, P. W., and Littell, A., Use of hydrogen bubbles for quantitative determination of time dependent velocity fields in low speed water flow, Department of Mechanical Engineering report No. MD-10, Stanford University, Stanford, California (1964).Google Scholar
  24. 24.
    Mitchell, J. E., and Hanratty, R. J., A study of turbulence at a wall using an electrochemical wall shear stress meter, J. Fluid Mech. 26, 199–221 (1966). See also Reference 25.CrossRefGoogle Scholar
  25. 25.
    Sirkar, K. K., and Hanratty, R. J., The use of electrochemical techniques to study turbulence close to a wall, in: Symposium on Turbulence Measurements in Liquids, University of Missouri at Rolla (1971).Google Scholar
  26. 26.
    Reiss, L. P., Investigations of turbulence near a pipe wall using a diffusion controlled electrode, Ph.D. dissertation, Chemical Engineering Department, University of Illinois (1962).Google Scholar
  27. 27.
    Mitchell, J. E., Investigation of wall turbulence using a diffusion controlled electrode, Ph.D. dissertation, Chemical Engineering Department, University of Illinois (1965).Google Scholar
  28. 28.
    Son, J. S., and Hanratty, T. J., Limiting relation for the eddy diffusivity close to a wall, Aiche J. 13, 689–696 (1967).CrossRefGoogle Scholar
  29. 29.
    Baldwin, L. V., and Cermak, J. C., Fluid mechanics, paper No. 2, Colorado State University (1964).Google Scholar
  30. 30.
    Mitsuta, Y., Sonic Anemometer—Thermometer for general use, /. Meteorol. Soc. Japan 44, 12–24 (1966).Google Scholar
  31. 31.
    Barrett, E. W., and Suomi, V. E., Preliminary report on temperature measurement by sonic means, J. Meteorol. 6, 273 (1949).CrossRefGoogle Scholar
  32. 32.
    Miyake, M., Stewart, R. W., Burling, R. W., Tsuang, L. R., Koprov, B. M., and Kuxnetzov, O. A., Comparison of acoustic instruments in an atmospheric turbulent flow over water, Boundary Layer Meteorol 2, 228–245 (1971).CrossRefGoogle Scholar
  33. 33.
    Plate, E. J., and Bennett, J. P., Rotary flow meter as turbulence transducer, J. Eng. Mech. Div. ASCE. Proc. 95 (No. EM6, paper No. 6955), 1307–29 (1969).Google Scholar
  34. 34.
    Siddon, T. E., and Ribner, H. S., An aerofoil probe for measuring the transverse component of turbulence, AIAA J. 3, 747–749 (1965).CrossRefGoogle Scholar
  35. 35.
    Cheng, D. Y., Introduction of the viscous force sensing fluctuating probe technique with measurement in the mixing zone of a circular jet, AIAA paper No. 73–1004 (1973).Google Scholar
  36. 36.
    Werner, F. D., An investigation of the possible use of a glow discharge as a means of measuring air flow characteristics, Rev. Sei. Instrum. 21, 61–68 (1950).CrossRefGoogle Scholar
  37. 37.
    Fuchs, W., Investigations of the operating properties of the leakage current anemoijieter, NAC A report No. TM-1178 (1947).Google Scholar
  38. 38.
    Sandborn, V. A., A review of turbulence measurements in compressible flow, NASA report No. TM X 62 - 337 (1974).Google Scholar
  39. 39.
    Kovasznay, L. S. G., Turbulence in supersonic flow, J. Aeronaut. Sei. 20, 657–674, 682 (1953).Google Scholar
  40. 40.
    Wilson, L. N., and Domkevala, R. J., Statistical properties of turbulent density fluctuations, J. Fluid Mech. 43, 291–303 (1970).CrossRefGoogle Scholar
  41. 41.
    Wehrmann, O. H., Velocity and density measurements in a free jet, in: Turbulent Shear Flows, AGARD CP-93 (1970), paper No. 15.Google Scholar
  42. 42.
    Wallace, J. E., Hypersonic turbulent boundary layer measurements using an electron beam, AIAA J. 7, 757–759 (1969).CrossRefGoogle Scholar
  43. 43.
    Laufer, J., Aerodynamic noise in supersonic wind tunnels, J. Aeronaut. Sei. 28, 685–692 (1961).MATHGoogle Scholar
  44. 44.
    Stainback, P. C., Wagner, R. D., Owen, F. K., and Horstman, C. C., Experimental studies of hypersonic boundary layer transition and effects of wind tunnel disturbances, NASA report No. TN D-7453 (1974).Google Scholar
  45. 45.
    Laderman, A. J., and Demetriades, A., Measurements of the mean and turbulent flow in a cooled-wall boundary layer at Mach 9.37, AIAA paper No. 72–73, San Diego, California (1972).Google Scholar
  46. 46.
    Laufer, J., Factors affecting transition Reynolds numbers on models in supersonic wind tunnels, J. Aeronaut. Sei. 21, 497–498 (1954).Google Scholar
  47. 47.
    Morkovin, M. V., On supersonic wind tunnels with low free-stream disturbances, Air Force Office of Scientific Research report No. TN 56–540 (1956).Google Scholar
  48. 48.
    Sandborn, V. A., and Wisniewski, R. J., Hot wire exploration of transition on cones in supersonic flow, Proceedings of the 1960 Heat Transfer and Fluid Mechanics Institute (D. M. Mason, W. C. Reynolds, and W. G. Vincenti, eds.), Stanford University Press, Stanford, California (1960).Google Scholar
  49. 49.
    Donaldson, J. C., and Wallace, J. P., Flow fluctuation measurements at Mach number 4 in the test section of the 12 inch supersonic tunnel (D), AEDC report No. TR-71-143 (1971).Google Scholar
  50. 50.
    Rose, W. C., and Johnson, D. A., Turbulence in a shock-wave boundary layer interaction, AIAA J. 13, 884–889 (1975).CrossRefGoogle Scholar
  51. 51.
    Klebanoff, P. S., Characteristics of turbulence in a boundary layer with zero pressure gradient, NACA report No. TR-1247 (1955).Google Scholar
  52. 52.
    Zoric, D. L., Approach of turbulent boundary layers to similarity, Ph.D. dissertation, Colorado State University, Fort Collins, Colorado (1968).Google Scholar
  53. 53.
    Corcos, G. M., Pressure measurements in unsteady flows, ASME Symposium on Measurements in Unsteady flow, Worcester, Massachusetts (1962), pp. 15–21.Google Scholar
  54. 54.
    Jones, B. G., and Planchon, H. P., A study of the local pressure field in turbulent shear flow and its relation to aerodynamic noise generation, NASA report No. CR 134493 (1972).Google Scholar
  55. 55.
    Way, J., and Libby, P. A., Hot wire probes for measuring velocity and concentration in helium-air mixtures, AIAA J. 8, 976–977 (1970).CrossRefGoogle Scholar
  56. 56.
    Yang, B. T., and Meroney, R. N., On diffusion from an instantaneous point source in a naturally stratified turbulent boundary layer with a laser light scattering probe, Colorado State University Technical Report No. 20 (CER 70-73 BTY-RNM-17), Fort Collins, Colorado (1972).Google Scholar
  57. 57.
    Brown, G. L., and Rebollo, M. R., A small, fast response probe to measure composition of a binary gas mixture, AIAA /. 10, 649–652 (1972).CrossRefGoogle Scholar
  58. 58.
    Way, J., and Libby, P. A., Application of hot wire anemometry and digital techniques to measurements in a turbulent helium jet, AIAA J. 9, 1567–1573 (1971).CrossRefGoogle Scholar
  59. 59.
    Corrsin, S., Extended application of the hot wire anemometer, NACA report No. TN1864 (1949).Google Scholar
  60. 60.
    Wray, K. L., A quantitative rapid response atom detector, AVCO Research Report No. 46 (1959).Google Scholar
  61. 61.
    Rosner, D. E., Catalytic probes for the determination of atom concentrations in high speed gas streams, ARSJ. 32, 1065–1073 (1962).Google Scholar
  62. 62.
    Hartunian, R. A., Local atom concentrations in hypersonic dissociated flows at low densities, Phys. Fluids 6, 343–348 (1963).CrossRefGoogle Scholar
  63. 63.
    Fage, A., and Falkner, V. M., An experimental determination of the intensity of friction on the surface of an aerofoil, Proc. R. Soc. London A129, 378–410 (1930).MATHCrossRefGoogle Scholar
  64. 64.
    Ludwieg, H., Instrument for measuring the wall shearing stress of turbulent boundary layers, NACA report No. TM-1284 (1950).Google Scholar
  65. 65.
    Owen, F. K., and Bellhouse, B. J., Skin-friction measurement at supersonic speeds, AIAA J. 8, 1358–1360 (1970).CrossRefGoogle Scholar
  66. 66.
    Bellhouse, B. J., and Schultz, D. L., Determination of mean and dynamic skin friction, separation and transition in low-speed flow with a thin film heated element, J. Fluid Mech. 24, 379–400 (1966).CrossRefGoogle Scholar
  67. 67.
    Kistler, A. L., Fluctuation measurements in a supersonic turbulent boundary layer, Phys. Fluids 2, 290–296 (1959).MATHCrossRefGoogle Scholar
  68. 68.
    Sandborn, V. A., and Pyle, W. L., Evaluation of the surface shear stress along rearward facing ramps, Research Memorandum No. 25, Colorado State University (1975).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • V. A. Sandborn
    • 1
  1. 1.College of EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations