The Complexity of Turbulent Fluid Motion

  • Trevor H. Moulden
  • Walter Frost
  • Albert H. Garner


Turbulence, a state of fluid motion, will be left as an intuitive concept without formal definition. Here we will only discuss the characteristics of turbulent motion and put forward techniques for its description. Under-standing and predicting turbulence is the subject of the present work.


Shear Layer Circular Cylinder Coherent Structure Fluid Motion Turbulent Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Monin, A. S., and Yaglom, A. M., Statistical Fluid Mechanics: Mechanics of Turbulence, (two volumes) MIT Press, Cambridge, Massachusetts (1971).Google Scholar
  2. 2.
    Davies, P. O. A. L., and Yule, A. J., Coherent structures in turbulence, J. Fluid Mech. 69, 513–537 (1975).Google Scholar
  3. 3.
    Prandtl, L., Neuere Ergebnisse der Turbulenzforschung, Z Verein Dtsch. Ing. 77, 105–114 (1933).Google Scholar
  4. 4.
    Nikuradse, J., Kinematographische Aufnahme einer turbulenten Strömung, Z. Angew. Math. Mech. 9, 495–496 (1929).MATHCrossRefGoogle Scholar
  5. 5.
    Van Atta, C. W., Sampling techniques in turbulence measurements, Annual Review of Fluid Mechanics, Vol. 6, (M. Van Dyke, W. G. Vincenti, and J. V. Wehausen, eds.), Annual Reviews Inc., Palo Alto, California (1974), pp. 75–91.Google Scholar
  6. 6.
    Serrin, J., Mathematical principles of classical fluid mechanics, Handbuch der Physik, Vol. 8/1 (S. Flügge, ed.), Springer-Verlag, Berlin (1959), pp. 125–263.Google Scholar
  7. 7.
    Truesdell, C., The Elements of Continuum Mechanics, Springer-Verlag, Berlin (1966).MATHGoogle Scholar
  8. 8.
    Shinbrot, M., Lectures on Fluid Mechanics, Gordon and Breach, London (1973).MATHGoogle Scholar
  9. 9.
    Kolmogorov, A. M., and Fomin, S. V., Introductory Real Analysis, Dover, New York (1975).Google Scholar
  10. 10.
    Jeffreys, H., and Jeffreys, B. S., Methods of Mathematical Physics, third edition, Cambridge University Press, Cambridge (1956).MATHGoogle Scholar
  11. 11.
    Lin, C. C., and Segel, L. A., Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Publishing Company, New York (1974).MATHGoogle Scholar
  12. 12.
    Aris, R., Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Prentice-Hall Inc., Englewood Cliffs, New Jersey (1962).MATHGoogle Scholar
  13. 13.
    Rosenhead, L., The second coefficient of viscosity: A brief review of fundamentals (and other papers on the same subject), Proc. R. Soc. (London), A226, 1–69 (1954).MathSciNetCrossRefGoogle Scholar
  14. 14.
    Panchev, S., Random Functions and Turbulence, Pergamon Press, Oxford (1971).MATHGoogle Scholar
  15. 15.
    Leslie, D. C., Developments in the Theory of Turbulence, Clarendon Press, Oxford (1973).MATHGoogle Scholar
  16. 16.
    Batchelor, G. K., The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge (1970).Google Scholar
  17. 17.
    Townsend, A. A., The Structure of Turbulent Shear Flow ( second edition ), Cambridge University Press, Cambridge (1976).MATHGoogle Scholar
  18. 18.
    Lorenz, E. N., Investigating the predictability of turbulent motion, in: Statistical Models and Turbulence ( M. Rosenblatt and C. W. Van Atta, eds.), Springer-Verlag, Berlin (1972), pp. 195–204.CrossRefGoogle Scholar
  19. 19.
    Stewart, R. W., Triple velocity correlations in isotropic turbulence, Proc. Cambridge Phil. Soc. 47, 146–157(1951).MATHCrossRefGoogle Scholar
  20. 20.
    Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Oxford University Press, Oxford (1961).Google Scholar
  21. 21.
    Lin, C. C., The Theory of Hydrodynamic Stability, Cambridge University Press, Cambridge (1966)Google Scholar
  22. 22.
    Stewart, J. T., Nonlinear stability theory. Wehauser, eds.), Annual Reviews, Inc., Palo Alto, California (1971), pp. 347 – 370.Google Scholar
  23. 23.
    Cliff, W. C., and Sandborn, V. A., Correlation between the outer flow and the turbulence production in a boundary layer, NASA Report No. TM X 64935 (1975).Google Scholar
  24. 24.
    Chorin, A. J., Lectures on Turbulence Theory, Publish or Perish Inc., Boston, Massachusetts (1975).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Trevor H. Moulden
    • 1
  • Walter Frost
    • 1
  • Albert H. Garner
    • 1
  1. 1.The University of Tennessee Space InstituteTullahomaUSA

Personalised recommendations