Lung Maturity and Pulmonary Phospholipid Metabolism

  • T. Allen Merritt
  • Michael Obladen
  • Louis Gluck


The lung is composed of more than 4C(1) different cell types, but no single type occupies the majority of lung mass. Although it has been reported that alveolar macrophages and Clara cells(7, 84, 96) can synthesize surface-active lecithin, most direct and indirect evidence suggests that the granular pneu-matocyte (alveolar Type II cell) is responsible for the synthesis of surfactant, particularly the major surface-active phospholipid, dipalmityl phosphatidylcholine. The alveolar Type II cell is an attenuated cell, one of two cell types lining alveoli containing characteristic inclusion bodies. They appear to be extruded into alveolar spaces to provide surface-active material. (82) Radioactive labeled precursors of surfactant ([3H]acetate and [3H]palmitate) can be located by autoradiography in Type II cells in the rabbit 30 min to several hours after intravenous injection. (37)


Respiratory Distress Syndrome Amniotic Fluid Fetal Lung Pulmonary Surfactant Lung Slice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, M., Akino, T., and Ohno, K., 1972, The formation of lecithin from lysolecithin in rat lung supernatant, Biochim. Biophys. Acta 280:275.PubMedGoogle Scholar
  2. 2.
    Abrams, M. E., 1966, Isolation and quantitative estimation of pulmonary surface active lipoprotein, J. Appl. Physiol. 21:718.PubMedGoogle Scholar
  3. 3.
    Akino, T., Abe, T., and Arai, T., 1971, Studies on the biosynthetic pathways of molecular species of lecithin by rat lung slices, Biochim. Biophys Acta 248:274.PubMedGoogle Scholar
  4. 4.
    Artom, C., 1968, Enzymes for the synthesis of lecithins from choline in tissues of developing rats, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 27:457.Google Scholar
  5. 5.
    Arvidson, G., Ekelund, H., and Astedt, B., 1972, Phospholipid composition of human amniotic fluid during gestation and at term, Acta Obstet. Gynecol. Scand. 51:71.PubMedGoogle Scholar
  6. 6.
    Askin, F. B., and Kuhn, C., 1971, The cellular origin of pulmonary surfactant, J. Lab. Invest. 25:270.Google Scholar
  7. 6a.
    Avery, M., and Chernick, V., 1977, On decision making surrounding drug therapy: A continuing dilemma, N. Ensl. J. Med. 296:102.Google Scholar
  8. 7.
    Azzopardi, A., and Thurlbeck, W. M., 1969, The histochemistry of the non-edited bronchiolar epithelial cell, Amer. Rev. Respir. Dis. 99:516.Google Scholar
  9. 8.
    Barron, E. S. G., Miller, Z. B., and Bartlett, G. R., 1947, Studies on biochemical oxidations. XXI. The metabolism of lung as determined by a study of slices and ground tissue, J. Biol. Chem. 171:791.PubMedGoogle Scholar
  10. 9.
    Baxter, C. F., Rouser, G., and Simon, G., 1969, Variations among vertebrates of lung phospholipid class composition, Lipids 4:243.PubMedGoogle Scholar
  11. 10.
    Bensch, K., Schaefer, K., and Avery, M. E., 1964, Granular pneumocytes: Electron microscopic evidence of their exocrine function, Science 145:1318.PubMedGoogle Scholar
  12. 11.
    Bhagwanani, S. G., Fahmy, D., and Turnbull, A. C., 1972, Prediction of respiratory distress by estimation of amniotic fluid lecithin, Lancet 1:159.PubMedGoogle Scholar
  13. 12.
    Blumenfeld, T. A., 1975, Clinical laboratory tests for fetal lung maturity, in: Pathology Annual 1975 (S. Sommers, ed.), p. 21, Appleton-Century-Crofts, New York.Google Scholar
  14. 13.
    Blumenfeld, T. A., Driscol, J., and James, L. S., 1974, Lecithin/sphingomyelin ratios in tracheal and pharyngeal aspirates, J. Pediatr. 85:403.PubMedGoogle Scholar
  15. 14.
    Body, D. R., and Gray, G. M., 1967, The isolation and characterization of phosphatidylglycerol and a structural isomer from pig lung, Chem. Phys. Lipids 1:254.Google Scholar
  16. 14a.
    Bremer, J., and Greenberg, D., 1961, Methyl transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine), Biochim. Biophys. Acta, 46:205–216.Google Scholar
  17. 15.
    Brown, E. S., 1964, Isolation and assay of dipalmityl lecithin in lung extracts, Amer. J. Physiol. 207:402.PubMedGoogle Scholar
  18. 16.
    Brumley, G. W., 1971, Lung development and lecithin metabolism, Arch. Intern. Med. 127:413.PubMedGoogle Scholar
  19. 17.
    Buckingham, S., 1961, Studies on the identification of an antiatelectasis factor in normal sheep lung, Amer. J. Dis. Child. 102:521.Google Scholar
  20. 18.
    Buckingham, S., Heingemann, H. O., Sommers, S. C., and McNary, W. F., 1966, Phospholipid synthesis in the large pulmonary alveolar cell: Its relation to lung surfactant, Amer. J. Pathol. 48:1027.Google Scholar
  21. 19.
    Campiche, M. A., 1960, Les inclusions lamellaires des cellules alveolaires dans le poumon du raton. Relations entre l’ultrasatructure et la fixation, J. Ulstrastruct. Res. 3:302.Google Scholar
  22. 20.
    Chernick, V., Hodson, W. A., and Greenfield, L. J., 1966, Effect of chronic pulmonary artery ligation on pulmonary mechanics and surfactant, J. Appl. Physiol. 21:1315.PubMedGoogle Scholar
  23. 21.
    Clements, J. A., 1971, Comparative lipid chemistry of lungs, Arch Intern. Med. 127:387.PubMedGoogle Scholar
  24. 22.
    Clements, J. A., 1973, Composition and properties of pulmonary surfactant, in: Respiratory Distress Syndrome (C. A. Villee, D. B. Villee, and J. Zuckerman, eds.), p. 77, Academic Press, New York.Google Scholar
  25. 23.
    Clements, J. A., and King, R. J., 1973, Pulmonary surfactant and its assay, in: Foetal and Neonatal Physiology: Proceedings of the Sir Joseph Barcraft Centenary Symposium, p. 618, Cambridge University Press, Oxford.Google Scholar
  26. 24.
    Clements, J. A., Nelleneegen, J., and Trahan, H.J., 1970, Pulmonary surfactant and evolution of the lungs, Science 169:603.PubMedGoogle Scholar
  27. 25.
    Clements, J. A., Platzker, A. C. G., Tierney, D. F., Hobel, C. J., Creasy, R. K., Marjolis, A. J., Thibeault, D. W., Tooley, W. H., and Oh, W., 1972, Assessment of the risk of the respiratory-distress syndrome by a rapid test for surfactant in amniotic fluid, N. Engl. J. Med. 286:1077.PubMedGoogle Scholar
  28. 26.
    Darrah, H., and Hedley-Whyte, J., 1973, Rapid incorporation of palmitate into lung: Site and metabolic fate, J. Appl. Physiol. 34:205.PubMedGoogle Scholar
  29. 26a.
    De-Lemos, R. A., Shermeta, D. W., Knelson, J., Kotas, R., and Avery, J., 1970, Acceleration of appearance of pulmonary surfactant in the fetal lamb by administration of corticosteroids, Am. Rev. Respir. Dis. 102:459.Google Scholar
  30. 27.
    De Fencl, M., and Tulchinsky, D., 1975, Total Cortisol in amniotic fluid and fetal lung maturation, N. Engl. J. Med. 292:133.PubMedGoogle Scholar
  31. 28.
    DiAugustine, R. P., 1971, Lung phospholipids. 1. In vivo studies of the incorporation of 32P, [methyl-14C]choline, l-14C-palmitic acid and 1–14C oleic acid into phosphatidylethanolamine, phosphatidyl-N, N-dimethylethanolamine and phosphatidylcholine, Biochem. Biophys. Res. Commun. 43:29.Google Scholar
  32. 29.
    Epstein, M. F., and Farrell, P. M., 1975, The choline incorporation pathway: Primary mechanism for de novo lecithin synthesis in fetal primate lung, Pediatr. Res. 9:658.PubMedGoogle Scholar
  33. 30.
    Epstein, M. F., Farrell, P. M., and Willison, J., 1975, Correlation of fetal lecithin synthesis and the amniotic fluid L/S ratio, Pediatr. Res. 9:276.Google Scholar
  34. 31.
    Erbland, J. F., and Marinett, V. G., 1965, The enzymatic acylation and hydrolysis of lysolecithin, Biochim. Biophys. Acta 106:128.PubMedGoogle Scholar
  35. 31a.
    Fariday, E. E., 1970 Effect of food and water deprivation on surface activity of lungs of rats, J. Appl. Physiol. 29, 493–498.Google Scholar
  36. 32.
    Faridy, E. E., and Naimark, A., 1971, Effect of distension on metabolism of excised dog lung, J. Appl. Physiol. 31:31.PubMedGoogle Scholar
  37. 33.
    Farrell, P. M., 1973, Regulation of pulmonary lecithin synthesis, in: Respiratory Distress Syndrome (C. A. Villee, D. B. Villee, and J. Zucherman, eds.), p. 211, Academic Press, New York.Google Scholar
  38. 34.
    Farrell, P. M., and Zachman, R. D., 1973, Induction of choline phosphotransferase and lecithin synthesis in the fetal lung by corticosteroids, Science 179:297.PubMedGoogle Scholar
  39. 35.
    Farrell, P. M., Epstein, M. F., Fleischman, A. R., Oakes, G. K., and Knight, E., 1974, Lecithin synthesis in fetal primate tissues as measured in vivo, Pediatr. Res. 8:446.Google Scholar
  40. 35a.
    Farrell, P., Epstein, M., Fleischman, A., Oakes, G. K., and Chez, R., 1976, Lung lecithin biosynthesis in the nonhuman primate fetus: Determination of the primary pathway in vivo, Biol. Neonate 29:238.PubMedGoogle Scholar
  41. 35b.
    Farrell, P., and Kotas, R., 1976, The prevention of hyaline membrane disease: New concepts and approaches to therapy, in: Advances in Pediatrics (Barness, ed.), pp. 213–269, Yearbook Medical Publishers, Chicago.Google Scholar
  42. 36.
    Farrell, P. M., Lundgren, D. W., and Adams, A. H., 1974, Choline kinase and choline phosphotransferase in developing fetal rat lung, Biochem. Biophys. Res. Commun. 57:696.PubMedGoogle Scholar
  43. 37.
    Faulkner, C. S., 1969, The role of the granular pneumocyte in surfactant metabolism: An autoradiographic study, Arch. Pathol. (Chicago) 87:521.Google Scholar
  44. 38.
    Felts, J. M., 1964, Biochemistry of the lung, Health Phys. 10:973.PubMedGoogle Scholar
  45. 39.
    Finley, T. N., Pratt, S. A., Ladman, A. J., Brewer, L., and McKay, M. G., 1968, Morphological and lipid analysis of the alveolar lining material in dog lung, J. Lipid Res. 9:357.PubMedGoogle Scholar
  46. 40.
    Finley, T. N., Tooley, W. H., Swenson, E. W., Gardner, R. E., and Clements, J. A., 1964, Pulmonary surface tension in experimental atelectasis, Amer. Rev. Respir. Dis. 89:372.Google Scholar
  47. 41.
    Fiscus, W. G., and Schneider, W. C., 1966, The role of phospholipids in stimulating phosphoryl-choline cytidyltransferase activity, J. Biol. Chem. 241:3324.PubMedGoogle Scholar
  48. 42.
    Frosolono, M. F., Charms, B. L., Pawlowski, R., and Slirka, S., 1970, Isolation, characterization, and surface chemistry of a surface-active fraction from dog lung, J. Lipid Res. 11:439.PubMedGoogle Scholar
  49. 43.
    Frosolono, M. F., Slirka, S., and Charms, B. L., 1971, Acyl transferase activities in dog lung microsomes, J. Lipid Res. 12:96.PubMedGoogle Scholar
  50. 44.
    Gallai-Hatchard, J. J., and Thompson, R. H. S., 1965, Phospholipase-A activity of mammalian tissue, Biochim. Biophys. Acta 98:128.PubMedGoogle Scholar
  51. 45.
    Gluck, L., 1972, Surfactant, Pediatr. Clin. North Amer. 19:325.Google Scholar
  52. 46.
    Gluck, L., Chez, R. A., Kulovich, M. V., Hutchinson, D. L., and Niemaan, W. H., 1974, Comparison of phospholipid indicators of fetal lung maturity in amniotic fluid of monkey (Macaca mulatta) and baboon (Papio papio), Amer. J. Obstet. Gynecol 230:524.Google Scholar
  53. 47.
    Gluck, L., Kulovich, M. V., and Borer, R., 1974, Clin. Perinatol. 1:125.PubMedGoogle Scholar
  54. 48.
    Gluck, L., Kulovich, M. V., Borer, R. C., Brenner, P. H., Anderson, G. G., and Spellacy, W. N., 1971, Diagnosis of the respiratory distress syndrome by amniocentesis, Amer. J. Obstet. Gynecol. 109:440.Google Scholar
  55. 49.
    Gluck, L., Kulovich, M. V., Eidelman, A. L., Cordero, L., and Khatin, A. F., 1972, Biochemical development of surface activity in mammalian lung. IV. Pulmonary lecithin synthesis in the human fetus and newborn and etiology of the respiratory distress syndrome, Pediatr. Res. 6:81.PubMedGoogle Scholar
  56. 50.
    Gluck, L., Kulovich, M. V., and Keidel, W. N., 1974, The interpretation and significance of the lecithin/sphingomyelin ratio in amniotic fluid, Amer. J. Obstet. Gynecol. 120:142.Google Scholar
  57. 51.
    Gluck, L., Landowne, R. A., and Kulovich, M. V., 1970, Biochemical development of surface activity in mammalian lung. III. Structural changes in lung lecithin during development of the rabbit fetus and newborn, Pediatr. Res. 4:352.PubMedGoogle Scholar
  58. 52.
    Gluck, L., Motoyama, E. K., Smits, H. L., and Kulovich, M. V., 1967, The biochemical development of surface activity in mammalian lung. I. The surface active phospholipids; the separation and distribution of surface active lecithin in the lung of the developing fetus, Pediatr. Res. 1:237.PubMedGoogle Scholar
  59. 53.
    Gluck, L., Scribney, M., and Kulovich, M., 1967, The biochemical development of surface activity in mammalian lung. II. The biosynthesis of phospholipids in the lung of the developing rabbit fetus and newborn, Pediatr. Res. 1:247.PubMedGoogle Scholar
  60. 54.
    Godinez, R. I., Sanders, R. L., and Longmore, W. J., 1975, Phosphatidylglycerol in rat lung. I. Identification as a metabolically active phospholipid in isolated perfused rat lung, Biochemistry 14:830.PubMedGoogle Scholar
  61. 55.
    Greengard, O., 1973, The developmental formation of enzymes in rat liver, in Biochemical Aspects of Hormones (G. Litevack, ed.), p. 53–87, Academic Press, New York.Google Scholar
  62. 56.
    Gross, I., and Warshaw, J. B., 1974, Enzyme activities related to fatty acid synthesis in developing mammalian lung, Pediatr. Res. 8:193.PubMedGoogle Scholar
  63. 56a.
    Gross, I., Ilic, I., Wilson, C., Rooney, S., 1976, The influence of postnatal nutritional deprivation on the phospholipid content of developing rat lung, Biochim. Biophys. Acta 441:412.PubMedGoogle Scholar
  64. 57.
    Hallman, M., and Gluck, L., 1974, Phosphatidyl glycerol in lung surfactant: I. Synthesis in rat lung microsomes, Biochem. Biophys. Res. Commun. 60:1.PubMedGoogle Scholar
  65. 58.
    Hallman, M., and Gluck, L., 1975, The biosynthesis of phosphatidylglycerol in the lung of the developing rabbit, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 34:3.Google Scholar
  66. 59.
    Hallman, M., and Raivio, K., 1974, Studies on the biosynthesis of disaturated lecithin of the lung: The importance of the lysolecithin pathway, Pediatr. Res. 8:874.PubMedGoogle Scholar
  67. 60.
    Hallman, M., Feldman, B., and Gluck, L., 1975, RDS: The absence of phosphatidylglycerol in surfactant, Pediatr. Res. 9:396.Google Scholar
  68. 60a.
    Hallman, M. Kulovich, M., Kirkpatrick, E., Sugarman, R., and Gluck, L., 1976, Phosphatidyl-inositol and phosphatidylglycerol in amniotic fluid: Indices of lung maturity, Amer. J. Obstet. Gynecol. 5:613.Google Scholar
  69. 61.
    Hallman, M., Kulovich, M., Kirkpatrick, E., Sugarman, R., and Gluck, L., 1975, Phosphatidyl-inositol (PI) and phosphatidylglycerol (PG) in amniotic fluid: Indices of lung maturity, Paper presented at the 8th Annual Meeting of the Society for the Study of Reproduction, Ft. Collins, Colorado.Google Scholar
  70. 62.
    Harding, P., Possmayer, F., and Milne, K., 1973, Amniotic fluid phospholipids and fetal maturity, Amer. J. Obstet. Gynecol. 115:298.Google Scholar
  71. 63.
    Harlan, W. R., Margraf, J. H., and Said, S. I., 1966, Pulmonary lipid composition of species with and without surfactant, Amer. J. Physiol. 211:855.PubMedGoogle Scholar
  72. 64.
    Hasegawa, S. H., and Ohno, K., 1975, Acyl-transferase activities in rat lung microsomes, Biochim. Biophys. Acta 380:486.Google Scholar
  73. 65.
    Henderson, R. F., and Pfleger, R. C., 1972, Surface tension studies of phosphatidyl glycerol isolated from the lungs of beagle dogs, Lipids 7:492.PubMedGoogle Scholar
  74. 66.
    Howatt, W. F., Avery, M. E., Humphreys, P. W., Normand, I. C. S., Reid, L., and Strange, L. B., 1965, Factors affecting pulmonary surface properties in the foetal lamb, Clin. Sci. 29:239.PubMedGoogle Scholar
  75. 67.
    Hummel, L., Schirrmeister, W., and Zimmermann, T., 1974, Origins of the fatty acid moiety of fetal serum phospholipids in rats, Biol. Neonate 24:292.PubMedGoogle Scholar
  76. 68.
    Johnston, J. M., Schultz, F. M., Jimenez, J. M., and MacDonald, P. C., 1975, Phospholipid biosynthesis: The activity of phosphatidic acid phospho-hydrolase in the developing lung and amniotic fluid, Chest (Suppl.) 67:195.Google Scholar
  77. 69.
    Kaibara, M., and Kikkawa, Y., 1971, Osmiophilia of the saturated phospholipid, dipalmitoyl lecithin, and its relationship to the alveolar lining layer of the mammalian lung, Amer. J. Anat. 132:61.PubMedGoogle Scholar
  78. 70.
    Karp, W., Sprecher, H., and Robertson, A., 1972, Human placental phospholipid synthesis, Biol. Neonate 22:398.Google Scholar
  79. 71.
    Kennedy, E. P., and Weiss, S. B., 1956, The function of cytidine coenzymes in the biosynthesis of phospholipids, J. Biol. Chem. 22:193.Google Scholar
  80. 72.
    Kerr, G. R., and Helmuth, A. C., 1974, Growth and development of the fetal rhesus monkey. V. Fatty acids of phospholipids in fetal lung, Biol. Neonate 25:10.PubMedGoogle Scholar
  81. 73.
    Kikkawa, Y., and Yoneda, K., 1974, The type II epithelial cell of the lung. I. Method of isolation, Lab. Invest. 30:76.PubMedGoogle Scholar
  82. 74.
    Kikkawa, Y., Motoyama, E. K., and Cook, C. D., 1965, The ultrastructure of the lungs of lambs: The relation of osmiophilic inclusions and alveolar lining layer to fetal maturation and experimentally produced respiratory distress, Amer. J. Pathol. 47:877.Google Scholar
  83. 75.
    King, R. J., and Clements, J. A., 1972, Surface active materials from dog lung. I. Method of isolation; Amer. J. Physiol 223:707.PubMedGoogle Scholar
  84. 76.
    King, R. J., and Clements, J. A., 1972, Surface active materials from dog lung. II. Composition and physiological correlations, Amer. J. Physiol. 223:715.PubMedGoogle Scholar
  85. 77.
    King, R. J., and Clements, J. A., 1972, Surface active material from dog lung. III. Thermal analysis, Amer. J. Physiol. 223:727.PubMedGoogle Scholar
  86. 78.
    King, R. J., Klass, D. J., Gikas, E. G., and Clements, J. A., 1973, Isolation of apoproteins from canine surface active material, Amer. J. Physiol. 224:788.PubMedGoogle Scholar
  87. 79.
    Klaus, M. H., Clements, J. A., and Havel, R. J., 1961, Composition of surface-active material isolated from beef lung, Natl. Acad. Sci. Pr oc. 47:1858.Google Scholar
  88. 80.
    Kokke, R., Hooghwinkel, G. J. M., Booij, H. L., Van den Bosch, H., Zelles, L., Mulder, E., and Van Deenen, L. L. M., 1963, Metabolism of lyso-lecithin and lecithin in a yeast supernatant, Biochim. Biophys. Acta 70:351.PubMedGoogle Scholar
  89. 81.
    Kotas, R. V., Trainor, E. J., Mims, L. C., and Harlow, R. D., 1974, Discrepancies between the Brockenhoff and Gluck method of lung lecithin fatty acid analysis, Amer. Rev. Respir. Dis. 110:669.Google Scholar
  90. 81a.
    Liggins, G. C., 1969, Premature delivery of foetal lambs infused with glucocorticoids, J. Endocrinol. 45:515.PubMedGoogle Scholar
  91. 82.
    Macklin, C. C., 1954, The pulmonary alveolar mucoid film and the pneumonocytes, Lancet 1:1099.Google Scholar
  92. 83.
    Markert, C. L., and Ursprung, H., 1962, The ontogeny of isozyme patterns of lactate dehydrogenase in the mouse, Dev. Biol. 5:363.Google Scholar
  93. 84.
    Mason, R. J., Huber, G., and Vaughan, M., 1972, Synthesis of dipalmitoyl lecithin by alveolar macrophages, J. Clin. Invest. 51:68.PubMedGoogle Scholar
  94. 85.
    Massaro, D., Simon, M. R., and Steinkamp, H., 1971, Metabolic factors affecting protein synthesis by lung in vitro, J. Appl. Physiol. 30:1.PubMedGoogle Scholar
  95. 86.
    Massaro, G. D., and Massaro, D., 1972, Granular pneumocytes. Electron microscopic radioautographic evidence of intracellular protein transport, Amer. Rev. Respir. Dis. 105:927.Google Scholar
  96. 87.
    Merritt, A., and Farrell, P., 1976, Diminished pulmonary lecithin synthesis in acidosis: Experimental findings as related to the respiratory distress syndrome, Pediatrics 57:32.PubMedGoogle Scholar
  97. 88.
    Michaelson, D. M., Horwitz, A. F., and Klein, M. P., 1973, Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosoniicated vesicles, Biochemistry 12:2637.PubMedGoogle Scholar
  98. 89.
    Morgan, T. E., 1969, Isolation and characterization of lipid N-methyl-transferase from dog lung, Biochim. Biophys. Acta 178:21.PubMedGoogle Scholar
  99. 90.
    Morgan, T. E., 1971, Biosynthesis of pulmonary surface-active lipids, Arch. Intern. Med. 127:401.PubMedGoogle Scholar
  100. 91.
    Morgan, T. E., and Edmunds, L. H., Jr., 1967 Pulmonary artery occlusion. III. Biochemical alteration, J. Appl. Physiol. 22:1012.PubMedGoogle Scholar
  101. 92.
    Morgan, T. E., and Morgan, B. C., 1973, Surfactant synthesis, storage, and release by alveolar cells, in: Respiratory Distress Syndrome (C. A. Villee, B. P. Villee, J. Zuckerman, eds.), p. 117, Academic Press, New York.Google Scholar
  102. 93.
    Morgan, T. E., Finley, T. N., and Fialkow, H., 1965, Comparison of the composition and surface activity of “alveolar” and whole lung lipids in the dog, Biochim. Biophys. Acta 106:403.PubMedGoogle Scholar
  103. 94.
    Motoyama, E. K., and Rooney, S. A., 1974, Does the methylation pathway contribute to the biosynthesis of surface active phosphatidylcholine in the lung, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 33:346.Google Scholar
  104. 95.
    Naimark, A., 1966, Pulmonary blood flow and the incorporation of palmitate-1-C14 by dog lung in vivo, J. Appl. Physiol. 21:1292.PubMedGoogle Scholar
  105. 96.
    Niden, A. H., 1967, Bronchiolar and large alveolar cell in pulmonary metabolism, Science 158:1323.PubMedGoogle Scholar
  106. 97.
    Obladen, M., and Merritt, A., 1975, Personal observations.Google Scholar
  107. 98.
    Obladen, M. W., Merritt, T. A., and Gluck, L., 1976, Newborn tracheal phospholipid patterns during RDS, Pediatr. Res. 10:465.Google Scholar
  108. 99.
    Pattle, R. E., and Thomas, L. C., 1961, Lipoprotein composition of the firm lining the lung, Nature (London) 189:844.Google Scholar
  109. 100.
    Petrdc, P., and Collet, A. J., 1974, Quantitative electron microscopic autoradiography of in vivo incorporation of 3H-choline, 3H-leucine, 3H-acetate, and 3H-galactose in non-ciliated bronchiolar (Clara) cells of mice: Amer. J. Anat. 139:519.Google Scholar
  110. 101.
    Pfleger, R. C., and Thomas, H. G., 1971, Beagle dog pulmonary surfactant lipids, Arch. Intern. Med. 127:863.PubMedGoogle Scholar
  111. 102.
    Pfleger, R. C., Henderson, R. F., and Waide, J., 1972, Phosphatidylglycerol—A major component of pulmonary surfactant, Chem. Phys. Lipids 9:51.PubMedGoogle Scholar
  112. 102a.
    Platzker, A., Kitterman, J., Mescher, E., Clements, J., and Tooley, W., 1975, Surfactant in the lung and tracheal fluid of the fetal lamb and acceleration of its appearance by dexamethasone, Pediatrics 56:554.PubMedGoogle Scholar
  113. 102b.
    Rhoades, R. A., 1975, Influence of starvation on the lung: Effect on glucose and palmitate utilization, J. Appl. Physiol. 38:513.PubMedGoogle Scholar
  114. 103.
    Richardson, C. J., Pomerance, J. J., Cunningham, M. D., and Gluck, L., 1974, Acceleration of fetal lung maturation following prolonged rupture of the membranes, Amer. J. Obstet. Gynecol. 118:1115.Google Scholar
  115. 104.
    Robertson, A. F., and Lands, W. E. M., 1962, Positional specificities in phospholipid hydrolysis, Biochemistry 1:804.PubMedGoogle Scholar
  116. 105.
    Rooney, S. A., Cana van, P. M., and Motoyama, E. K., 1974, The identification of phosphatidyl-glycerol in the rat, rabbit, monkey, and human lung, Biochem. Biophys. Acta 300:56.Google Scholar
  117. 105a.
    Rooney, S., Gross, I., Gassenheimer, L., and Motoyama, E., 1975, Stimulation of glycerophosphate phosphatidyltransferase activity in fetal rabbit lung by Cortisol administration, Biochim. Biophys. Acta 398:433.PubMedGoogle Scholar
  118. 105b.
    Rooney, S., Gobran, L., Gross, I., Wai-Lee, T., Nardone, L., and Motoyama, E., 1976, Studies of pulmonary surfactant: Effects of Cortisol administration to fetal rabbits on lung phospholipid content; composition and biosynthesis, Biochim. Biophys. Acta 450:121.PubMedGoogle Scholar
  119. 106.
    Rosenthal, A. F., Vargas, M. G., and Schiff, S. V., 1974, Comparison of four indexes of fetal pulmonary maturity, Clin. Chem. 20:486.PubMedGoogle Scholar
  120. 107.
    Roux, J. F., and Myers, R. E., 1974, In vitro metabolism of palmitic acid and glucose in developing tissue of the rhesus monkey, Amer. J. Obstet. Gynecol. 118:385.Google Scholar
  121. 108.
    Roux, J. F., and Yoshioko, T., 1972, In vitro metabolism of palmitic acid in human fetal tissue, Pediatr. ties. 6:675.Google Scholar
  122. 109.
    Said, S. I., Harlan, W. R., Burke, G. W., and Elliott, C. M., 1968, Surface tension, metabolic activity, and lipid composition of alveolar cells in washings from normal dog lungs and after pulmonary artery ligation; importance of a highly surface-active acellular layer, J. Clin. Invest. 47:336.PubMedGoogle Scholar
  123. 110.
    Salisburg-Murphy, S., Rubinstein, D., and Beck, J. C., 1966, Lipid metabolism in lung slices, Amer. J. Physiol. 211:989.Google Scholar
  124. 111.
    Sanders, R. L., and Longmore, W. J., 1975, Phosphatidylglycerol in rat lung. II. Comparison of occurrence, composition, and metabolism in surfactant and residual lung fractions, Biochemistry 14:835.PubMedGoogle Scholar
  125. 112.
    Scarpelli, E. M., Clutario, B. C., and Taylor, F. A., 1967, Preliminary identification of lung surfactant system, J. Appl. Physiol 23:880.PubMedGoogle Scholar
  126. 113.
    Schaefer, K. E., Avery, M. E., and Bensch, H., 1964. Time course of changes in surface tension and morphology of alveolar epithelial cells in CO2-induced hyaline membrane disease, J. Clin. Invest. 43:2080.PubMedGoogle Scholar
  127. 114.
    Scholz, R. W., and Rhoades, R. A., 1971, Lipid metabolism by rat lung in vitro. Effect of starvation and re-feeding on utilization of (U-14C) glucose by lung slices, Biochem. J. 124:257.PubMedGoogle Scholar
  128. 114a.
    Sharp-Cageorge, S., Blicher, B., Gordon, E., and Murphy, B., 1977. Amniotic-fluid Cortisol and human fetal lung maturation, N. Engl. J. Med. 296:89.PubMedGoogle Scholar
  129. 114b.
    Sivakumaran, T., Duncan, M., and Effer, S., 1975, Relationship between Cortisol and lecithin/ sphingomyelin ratios in human amniotic fluid, Am. J. Obstet. Gynecol. 122:291.PubMedGoogle Scholar
  130. 115.
    Smith, B., and Torday, J. S., 1974, Factors affecting lecithin synthesis by fetal lung cells in culture, Pediatr. Res. 8:848.PubMedGoogle Scholar
  131. 116.
    Sorokin, S. P., 1970, The cells of the lung, in: Proceedings of the Biological Division, Oak Ridge National Laboratory, Atomic Energy Commission, Series 21, Oak Ridge, Tennessee.Google Scholar
  132. 117.
    Spellacy, W. N., Buhl, W. C., Riggall, E. C., and Holsinger, K. L., 1973, Human amniotic fluid lecithin/sphingomyelin ratio changes with estrogen or glucocorticoid treatment, Amer. J. Obstet. Gynecol. 115:216.Google Scholar
  133. 118.
    Spitzer, H. L., Morrison, K., and Norman, J. R., 1968, The incorporation of L-[Me-14C]methionine and [Me-3H]choline into lung phosphatides, Biochim. Biophys. Acta 152:552.PubMedGoogle Scholar
  134. 119.
    Spitzer, H. L., Rice, J. M., McDonald, P. C., and Johnson, J. M., 1975, Phospholipid biosynthesis in lung lamellar bodies, Biochem. Biophys. Res. Commun. 66:17.PubMedGoogle Scholar
  135. 120.
    Stadtman, E. T., 1970, Mechanisms of enzyme regulation in metabolism, in: The Enzymes: Structure and Control (P. D. Boyer, ed.), p. 397, Academic Press, New York.Google Scholar
  136. 121.
    Stein, O., and Stein, Y., 1969, Lecithin synthesis, intracellular transport, and secretion in rat liver, J. Cell. Biol. 40:161.Google Scholar
  137. 122.
    Thannhauser, S. J., Benotti, J., and Boncoddo, N. F., 1946, Isolation and properties of hydro-lecithin (dipalmitoyl lecithin) from lungs, its occurrence in the sphingomyelin fraction of the lung tissue, J. Biol. Chem. 155:669.Google Scholar
  138. 123.
    Thom, M. L., and Zachman, R. D., 1975, The enzymes of lecithin biosynthesis in human neonatal lungs. IV. Phosphorylcholine cytidyltransferace, Pediatr. Res. 9:201.PubMedGoogle Scholar
  139. 124.
    Thompson, W., Macdonald, G., and Mookerjea, X., 1969, Metabolism of phosphorylcholine and lecithin in normal and choline-deficient rats, Biochim. Biophys. Acta 176:306.PubMedGoogle Scholar
  140. 125.
    Tierney, D. F., 1971, Lactate metabolism in rat lung tissue, Arch. Intern. Med. 127:858.PubMedGoogle Scholar
  141. 126.
    Tierney, D. F., Ayers, L., Herzog, S., and Yang, J., 1973, Pentose pathway and NADPH production: A mechanism which may protect lung from oxidants, Amer. Rev. Respir. Dis. 108:1348–1351.Google Scholar
  142. 127.
    Wang, M. C., and Meng, H. C., 1972, Lipid synthesis by rat lung in vitro, Lipids 7:207.Google Scholar
  143. 128.
    Weber, G., 1963, Study and evaluation of regulation of enzyme activity and synthesis in mammalian liver, Adv. Enzyme Regul. 1:1.PubMedGoogle Scholar
  144. 129.
    Weber, K. C., and Visscher, M. B., 1969, Metabolism of the isolated canine lung, Amer. J. Physiol. 217:1044.PubMedGoogle Scholar
  145. 130.
    Weinhold, P. A., 1968, Biosynthesis of phosphatidylcholine during prenatal development of the rat lung, J. Lipid Res. 9:262.PubMedGoogle Scholar
  146. 131.
    Weinhold, P. A., Sander, R., and Stern, W., 1973, Regulation of choline phosphoglyceride synthesis during lung development in the rat, in: Respiratory Distress Syndrome (C. A. Villee, D. B. Villee, and J. Zuckerman, eds.), p. 29, Academic Press, New York.Google Scholar
  147. 132.
    Weinhold, P. A., Skinner, R. S., and Sanders, R. D., 1973, Activity and some properties of choline kinase, choline phosphate cytidyltransferase and choline phosphotransferase during liver development in the rat, Biochim. Biophys. Acta 326:43.PubMedGoogle Scholar
  148. 132a.
    Weiss, H. S., and Jurrus, E., 1971, Starvation on compliance and surfactant of the rat lung, Resp. Physiol. 12:123.Google Scholar
  149. 133.
    Wolfe, B M. J., Anhalt, B., Beck, J. C., and Rubinstein, D., 1970, Lipid metabolism in rabbit lungs, Can. J. Biochem. 48:170.PubMedGoogle Scholar
  150. 134.
    Yeager, H., Jr., and Massaro, D., 1972, Glucose metabolism and glycoprotein synthesis by lung slices, J. Appl. Physiol. 32:477.PubMedGoogle Scholar
  151. 135.
    Young, S. L., and Tierney, D. F., 1972, Dipalmitoyl lecithin secretion and metabolism by the rat lung, Amer. J. Physiol. 222:1539.PubMedGoogle Scholar
  152. 136.
    Zachman, R. D., 1971, The enzymes of lecithin biosynthesis in human newborn lungs. I. Choline kinase, Biol. Neonate 19:211.PubMedGoogle Scholar
  153. 137.
    Zachman, R. D., 1972, The enzymes of lecithin bio-synthesis in human newborn lungs. II. Methion-ine-activating enzyme and phosphatidyl methyl-transferase, Biol. Neonate 20:448.PubMedGoogle Scholar
  154. 138.
    Zachman, R. D., 1973, The enzymes of lecithin biosynthesis in human newborn lungs. III. Phosphorylcholine glyceride transferase, Pediatr. Res. 7:632.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • T. Allen Merritt
    • 1
  • Michael Obladen
    • 1
  • Louis Gluck
    • 1
  1. 1.Department of Pediatrics, School of MedicineUniversity of California San DiegoLa JollaUSA

Personalised recommendations