Advertisement

Respiration and the Respiratory System

  • Herbert S. HarnedJr.

Abstract

While the fetus is undergoing development of its own respiratory tract and the intricate neural, muscular, and circulatory structures necessary for initiating respiration at birth, it must entirely depend on its mother for the supply of oxygen and release of carbon dioxide, and for the maintenance of a metabolic environment compatible with its well-being. The dramatic substitution of its own respiratory system for that of the placenta is the primary event that occurs at birth, and the failure to perform this respiratory transition is the major cause of death or morbidity in the perinatal period. To visualize the primary significance of this change at birth, it is essential to understand the respiratory state of the fetus in utero. To aid in this understanding, the development of the placenta and its function as a respiratory organ will be emphasized in this section, as well as the development of the fetus’s own respiratory system.

Keywords

Carotid Body Maternal Blood Peripheral Chemoreceptor Fetal Lamb Bohr Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acheson, G. H., Dawes, G. S., and Mott, J. C., 1957, Oxygen consumption and the arterial oxygen saturation in foetal and new-born lambs, J. Physiol. 135:623–642.PubMedGoogle Scholar
  2. 2.
    Adams, F. H., and Fujiwara, T., 1957, Surfactant in fetal lamb tracheal fluid, J. Pediatr. 63:537–542.Google Scholar
  3. 3.
    Adams, F. H., Desilets, D. T., and Towers, B., 1967, Control of flow of fetal lung fluid at the laryngeal outlet, Respir. Physiol. 2:302–309.PubMedGoogle Scholar
  4. 4.
    Adams, F. H., Fujiwara, T., and Rowshan, G., 1963, The nature and origin of the fluid in the fetal lamb lung, J. Pediatr. 63:881–888.PubMedGoogle Scholar
  5. 5.
    Adams, F. H., Moss, A. J., and Fagan, L., 1963, The tracheal fluid in the fetal lamb, Biol. Neonat. 5:151–158.PubMedGoogle Scholar
  6. 6.
    Adamsons, K., Jr., 1959, Breathing and the thermal environment in young rabbits, J. Physiol. 149:144–153.PubMedGoogle Scholar
  7. 7.
    Adamsons, K., Jr., 1965, Transport of organic substances and oxygen across the placenta, in: Symposium on the Placenta, Birth Defects Original Article Series, (D. Bergsma, ed.), Vol. I pp. 27–34, National Foundation March of Dimes, New York.Google Scholar
  8. 8.
    Adamsons, K., Jr., Gandy, G. M., and James, L. S., 1965, The Influence of thermal factors upon oxygen consumption of the newborn human infant, J. Pediatr. 66:495–508.Google Scholar
  9. 9.
    Adrian, E. D., 1933, Afferent impulses in the vagus and their effect on respiration, J. Physiol. 79:332–358.PubMedGoogle Scholar
  10. 10.
    Aherne, W., and Dawkins, M. J. R., 1964, The removal of fluid from the pulmonary airways after birth in the rabbit and the effect on this of prematurity and pre-natal hypoxia, Biol. Neonat. 7:214–229.PubMedGoogle Scholar
  11. 11.
    Aherne, W., and Dunnill, M. S., 1966, Morphometry of the human placenta, Br. Med. Bull. 22:5–8.PubMedGoogle Scholar
  12. 12.
    Ahfeld, F., 1905, Die intrauterine Tätigkeit der Thorax und Zwerchfellmuskulatur, intrauterine Atmung, Monatsschr. Geburtshilfe Gynfiwkol. 21:143–163.Google Scholar
  13. 13.
    Anselmino, K. J., and Hoffman, F., 1930, Die Ursachen des Icterus neonatorum, Arch. Gynaekol. 143:477–499.Google Scholar
  14. 14.
    Assali, N. S., Dasgupta, K., Kolin, A., and Holms, L., 1958, Measurement of uterine blood flow and uterine metabolism. V. Changes during spontaneous and induced labor in unanesthetized pregnant sheep and dogs, Amer. J. Physiol. 195:614–620.PubMedGoogle Scholar
  15. 15.
    Assali, N. S., Douglass, R. A., Jr., Baird, W. W., Nicholson, D. B., and Suyemoto, R., 1953, Measurement of uterine blood flow and uterine metabolism. IV. Results in normal pregnancy, Amer. J. Obstet. Gynecol. 66:248–253.Google Scholar
  16. 16.
    Assali, N. S., Morris, J. A., and Beck, R., 1965, Cardiovascular hemodynamics in the fetal lamb before and after lung expansion, Amer. J. Physiol. 208:122–129.PubMedGoogle Scholar
  17. 17.
    Assali, N. S., Rauramo, L., and Peltonen, T., 1960, Measurement of uterine blood flow and uterine metabolism. VIII. Uterine and fetal blood flow and oxygen consumption in early pregnancy, Amer. J. Obstet. Gynecol. 79:86–98.Google Scholar
  18. 18.
    Avery, M. E., 1964, The Lung and Its Disorders in the Newborn Infant, p. 6, W. B. Saunders Co., Philadelphia.Google Scholar
  19. 19.
    Avery, M. E., 1972, Prevention of hyaline membrane disease, Pediatrics 50:513, 514.Google Scholar
  20. 20.
    Avery, M. E., and Mead, J., 1959, Surface properties in relation to atelectasis and hyaline membrane disease, Amer. J. Dis. Child. 97:517–523.Google Scholar
  21. 21.
    Avery, M. E., Chernick, V., Dutton, R. E., and Permutt, S., 1963, Ventilatory response to inspired carbon dioxide in infants and adults, J. Appl. Physiol. 18:895–903.PubMedGoogle Scholar
  22. 22.
    Avery, M. E., Chernick, V., and Young, M., 1965, Fetal respiratory movements in response to rapid changes of CO2 in carotid artery, J. Appl. Physiol. 20:225–227.Google Scholar
  23. 23.
    Baillie, P., Dawes, G. S., Merlet, C. L., and Richards, R., 1971, Maternal hyperventilation and foetal hypocapnia in sheep, J. Physiol. 218:635–650.PubMedGoogle Scholar
  24. 24.
    Barcroft, J., 1947, Researches on Prenatal Life, pp. 156–177, Charles C. Thomas, Springfield, Illinois.Google Scholar
  25. 25.
    Barcroft, J., 1947, Researches on Prenatal Life, pp. 260–264, Charles C. Thomas, Springfield, Illinois.Google Scholar
  26. 26.
    Barcroft, J., and Karvonen, M. J., 1948, The action of carbon dioxide and cyanide on foetal respiratory movements: The developments of chemoreflex function in sheep, J. Physiol. 107:153–161.PubMedGoogle Scholar
  27. 27.
    Barcroft, J., Herkel, W., and Hill, S., 1933, The rate of blood flow and gaseous metabolism of the uterus during pregnancy, J. Physiol. 77:194–206.PubMedGoogle Scholar
  28. 28.
    Barron, D. H., Metcalfe, J., Meschia, G., Huckabee, W., Hellegers, A., and Prystowsky, H., 1963, in: Symposium on Physiological Effects of High Altitude (W. H. Weihe, ed.), pp. 115–129, Pergamon Press, New York.Google Scholar
  29. 29.
    Bartels, H., 1970, Prenatal Respiration, pp. 104 and 105, North-Holland Publishing Co., Amsterdam and London.Google Scholar
  30. 30.
    Bartels, H., 1970, Prenatal Respiration, pp. 117–119, North-Holland Publishing Co., Amsterdam and London.Google Scholar
  31. 31.
    Bartels, H., 1970, Prenatal Respiration, p. 138, North-Holland Publishing Co., Amsterdam and London.Google Scholar
  32. 32.
    Bartels, H., Moll, W., and Metcalfe, J., 1962, Physiology of gas exchange in the human placenta, Amer. J. Obstet. Gynecol. 84:1714–1730.Google Scholar
  33. 33.
    Battaglia, F. C., Meschia, G., Makowski, E. L., and Bowes, W., 1968, The effect of maternal oxygen inhalation upon fetal oxygenation, J. Clin. Invest. 47:548–555.PubMedGoogle Scholar
  34. 34.
    Bauer, C., Ludwig, M., Ludwig, I., and Bartels, H., 1969, Factors governing the oxygen affinity of human adult and foetal blood, Respir. Physiol. 7:271–277.PubMedGoogle Scholar
  35. 35.
    Beatty, C. H., Basinger, G. M., and Bocek, R. M., 1968, Oxygen consumption and glycolysis in fetal, neonatal, and infant muscle of the rhesus monkey, Pediatrics 42:5–16.PubMedGoogle Scholar
  36. 36.
    Beer, R., Bartels, H., and Raczkowski, H. A., 1955, Die Sauerstoff-dissoziationskurve des fetalen Blutes und der Gasaustausch in der menschlichen Placenta, Arch. Gesamte Physiol. 260:306–319.Google Scholar
  37. 37.
    Behrman, R. E., Lees, M. H., Peterson, E. N., de Lannoy, C. W., and Seeds, A. E., 1970, Distribution of the circulation in the normal and asphyxiated fetal primate, Amer. J. Obstet. Gynecol. 108:956–969.Google Scholar
  38. 38.
    Behrman, R. E., Peterson, E. N., and de Lannoy, C. W., 1969, The supply of O2 to the primate fetus with two different O2 tensions and anesthetics, Respir. Physiol. 6:271–283.PubMedGoogle Scholar
  39. 39.
    Benesch, R., and Benesch, R., 1967, The effect of organic phosphates from the human erythrocyte on all allosteric properties of hemoglobin, Biochem. Biophys. Res. Commun. 26:162–167.PubMedGoogle Scholar
  40. 40.
    Biscoe, T. J., 1971, Carotid body: Structure and function, Physiol. Rev. 51:437–495.PubMedGoogle Scholar
  41. 41.
    Biscoe, T. J., and Purves, M. J., 1965, Cervical sympathetic and chemoreceptor activity before and after the first breath of the new-born lamb, J. Physiol. 181:70p, 71p.Google Scholar
  42. 42.
    Biscoe, T. J., Bradley, G. W., and Purves, M. J., 1970, The relation between carotid body chemoreceptor discharge, carotid sinus pressure and carotid body venous flow, J. Physiol. 208:99–120.PubMedGoogle Scholar
  43. 43.
    Biscoe, T. J., Purves, M. J., and Sampson, S. R., 1969, Types of nervous activity which may be recorded from the carotid sinus nerve in the sheep foetus, J. Physiol. 202:1–23.PubMedGoogle Scholar
  44. 44.
    Blatteis, C. M., 1964, Hypoxia and the metabolic response to cold in new-born rabbits, J. Physiol. 172:358–368.PubMedGoogle Scholar
  45. 45.
    Blechner, J. N., Cotter, J. R., Stenger, V. G., Hinkley, C. M., and Prystowsky, H., 1968, Oxygen, carbon dioxide, and hydrogen ion concentrations in arterial blood during pregnancy, Amer. J. Obstet. Gynecol. 100:1–6.Google Scholar
  46. 46.
    Boddy, K., and Dawes, G. S., 1975, Fetal breathing, Br. Med. Bull. 31:3–7.PubMedGoogle Scholar
  47. 47.
    Boddy, K., and Mantell, C. D., 1972, Observations of fetal breathing movements transmitted through the maternal abdominal wall, Lancet 2:1219, 1220.Google Scholar
  48. 48.
    Boe, F., 1954, Vascular morphology of the human placenta, Cold Spring Harbor Symp. Quant. Biol. 19:29–35.PubMedGoogle Scholar
  49. 49.
    Boston, R. W., Humphreys, P. W., Reynolds, E. O. R., and Strang, L. B., 1965, Lymph flow and clearance of liquid from the lungs of the foetal lamb, Lancet 2:473, 474.Google Scholar
  50. 50.
    Boyden, E. A., 1974, The mode of origin of pulmonary acini and respiratory bronchioles in the fetal lung, Amer. J. Anat. 141:317–328.PubMedGoogle Scholar
  51. 51.
    Bradley, R. M., and Mistretta, C. M., 1973, Swallowing in fetal sheep, Science 179:1016, 1017.Google Scholar
  52. 52.
    Bradley, R. M., and Mistretta, C. M., 1973, The sense of taste and swallowing activity in foetal sheep, in: Foetal and Neonatal Physiology, Proceedings of the Sir J. Barcroft Centenary Symposium, pp. 77–81, Cambridge University Press.Google Scholar
  53. 53.
    Bradley, R. M., and Mistretta, C. M., 1973, The gustatory sense in foetal sheep during the last third of gestation, J. Physiol. 231:271–282.PubMedGoogle Scholar
  54. 54.
    Brady, J. P., and Ceruti, E., 1966, Chemoreceptor reflexes in the newborn infant: Effects of varying degrees of hypoxia on heart rate and ventilation in a warm environment, J. Physiol. 184:631–645.PubMedGoogle Scholar
  55. 55.
    Brady, J. P., and Dunn, P. M., 1970, Chemoreceptor reflexes in the newborn infant: Effect of CO2 on the ventilatory response to hypoxia, Pediatrics 45:206–215.PubMedGoogle Scholar
  56. 56.
    Brady, J. P., and Tooley, W. H., 1966, Cardiovascular and respiratory reflexes in the newborn, Pediatr. Clin. North Amer. 13:801–821.Google Scholar
  57. 57.
    Brady, J. P., Cotton, E. C., and Tooley, W. H., 1964, Chemoreflexes in the newborn infant: Effects of 100% O2 on heart rate and ventilation, J. Physiol. 172:332–341.PubMedGoogle Scholar
  58. 58.
    Breuer, J., 1898, Die Selbststeuerung der Atmung durch den Nervus vagus, Sitzungsber. Akad. Wiss. Wien Abt. II 58:909–937.Google Scholar
  59. 59.
    Brotanek, V., Hendricks, C. H., and Yoshida, T., 1969, Changes in uterine blood flow during uterine contractions, Amer. J. Obstet. Gynecol. 103:1108–1116.Google Scholar
  60. 60.
    Brück, K., Adams, F. H., and Brück, M., 1962, Temperature regulation in infants with chronic hypoxemia, Pediatrics 30:352–360.Google Scholar
  61. 61.
    Bûcher, U., and Reid, L., 1961, Development of the intrasegmental bronchial tree: The pattern of branching and development of cartilage at various stages of intrauterine life, Thorax 16:207–218.PubMedGoogle Scholar
  62. 62.
    Burns, B.D., 1963, The central control of respiratory movements, Br. Med. Bull. 19:7–9.PubMedGoogle Scholar
  63. 63.
    Burns, B., and Gurtner, G. H., 1973, A specific carrier for oxygen and carbon monoxide in the lung and placenta, Drug Metab. Dispos. 1:374–379.PubMedGoogle Scholar
  64. 64.
    Burwell, C. S., and Metcalfe, J., 1958, Heart Disease and Pregnancy: Physiology and Management, Little, Brown and Co., Boston.Google Scholar
  65. 65.
    Bystrzycka, E., Nail, B. S., and Purves, M. J., 1975, Central and peripheral neural respiratory activity in the mature sheep foetus and newborn lamb, Respir. Physiol. 25:199–215.PubMedGoogle Scholar
  66. 66.
    Campbell, A. G. M., Dawes, G. S., Fishman, A. P., and Hyman, A. I., 1967, Regional redistribution of blood flow in the mature fetal lamb, Circ. Res. 21:229–235.PubMedGoogle Scholar
  67. 67.
    Campbell, A. G. M., Dawes, G. S., Fishman, A. P., Hyman, A. I., and James, G. B., 1966, The oxygen consumption of the placenta and foetal membranes in the sheep, J. Physiol. 182:439–464.PubMedGoogle Scholar
  68. 68.
    Campiche, M., Jaccottet, M., and Juillard, E., 1962, La pneumonose à membranes hyalines, Ann. Paediatr. (Basel) 199:74–88.Google Scholar
  69. 69.
    Ceruti, E., 1966, Chemoreceptor reflexes in the newborn infant: Effect of cooling on the response to hypoxia, Pediatrics 37:556–564.PubMedGoogle Scholar
  70. 70.
    Chanutin, A., and Curnish, R., 1967, Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes, Arch. Biochem. Biophys. 121:96–102.PubMedGoogle Scholar
  71. 71.
    Chorobski, J., and Penfield, W., 1932, Cerebral vasodilator nerves and their pathway from the medulla oblongata, Arch. Neurol. Psychiatry 28:1257–1289.Google Scholar
  72. 72.
    Chu, J., Clements, J. A., Cotton, E., Klaus, M. H., Sweet, A. Y., Thomas, M. A., and Tooley, W. H., 1965, The pulmonary hypoperfusion syndrome: A preliminary report, Pediatrics 35:733–742.PubMedGoogle Scholar
  73. 73.
    Coleman, A. J., 1967, Absence of harmful effect of maternal hypocapnia in babies delivered at C-section, Lancet 1:813, 814.Google Scholar
  74. 74.
    Comline, R. S., and Silver, M., 1966, Development of activity in the adrenal medulla of the foetus and new-born animal, Br. Med. Bull. 22:16–20.PubMedGoogle Scholar
  75. 75.
    Comline, R. S., and Silver, M., 1975, Placental transfer of blood gases, Br. Med. Bull. 31:25–31.PubMedGoogle Scholar
  76. 76.
    Conly, P., Morrison, W. T., Sandberg, D. H., and Cleveland, W. W., 1968, Plasma progesterone in the perinatal and neonatal period, Pediatr. Res. 2:308.Google Scholar
  77. 77.
    Cotter, J. R., Blechner, J. N., and Prystowsky, H., 1969, Blood flow and oxygen consumption of pregnant goats, Amer. J. Obstet. Gynecol. 103:1099–1101.Google Scholar
  78. 78.
    Crehshaw, M. C., Meschia, G., and Barron, D. H., 1966, Role of progesterone in inhibition of muscle tone and respiratory rhythm in foetal lambs, Nature (London) 212:842, 843.Google Scholar
  79. 79.
    Cross, K. W., 1961, Respiration of the newborn baby, Br. Med. Bull. 17:160–163.PubMedGoogle Scholar
  80. 80.
    Cross, K. W., and Warner, P., 1951, The effect of inhalation of high and low oxygen concentrations on the respiration of the newborn infant, J. Physiol. 114:283–295.PubMedGoogle Scholar
  81. 81.
    Cross, K. W., Flynn, D. M., and Hill, J. R., 1966, Oxygen consumption in normal newborn infants during moderate hypoxia in warm and cool environments, Pediatrics 37:565–576.PubMedGoogle Scholar
  82. 82.
    Cross, K. W., Klaus, M., Tooley, W. H., and Weisser, K., 1960, The response of the newborn baby to inflation of the lungs, J. Physiol. 151:551–565.PubMedGoogle Scholar
  83. 83.
    Danesino, V., 1950, Dispositivi di blocco ed anatomosi arterovenose nei vasi fetali della placenta umana, Arch. Ostet. Ginecol. 55:251–272.PubMedGoogle Scholar
  84. 84.
    Dawes, G. S., 1962, The umbilical circulation, Amer. J. Obstet. Gynecol. 84:1634–1648.Google Scholar
  85. 85.
    Dawes, G. S., 1966, Transition to extrauterine life, in: Neonatal Respiratory Adaptation (T. K. Oliver, ed.), pp. 115 and 116, U.S. Public Health Service Publication 1432, Washington, D.C.Google Scholar
  86. 86.
    Dawes, G. S., 1967, Oxygen consumption of the placenta and foetal membranes in the sheep, in: Development of the LungCiba Foundation Symposium (A. V. S. de Reuck and R. Porter, eds.), p. 306, Little, Brown, and Co., Boston.Google Scholar
  87. 87.
    Dawes, G. S., 1968, Foetal and Neonatal Physiology: A Comparative Study of the Changes at Birth, pp. 32 and 33, Year Book Medical Publishers, Chicago.Google Scholar
  88. 88.
    Dawes, G. S., 1968, Foetal and Neonatal Physiology: A Comparative Study of the Changes at Birth, p. 132, Year Book Medical Publishers, Chicago.Google Scholar
  89. 89.
    Dawes, G. S., 1968, Foetal and Neonatal Physiology: A Comparative Study of the Changes at Birth, p. 135, Year Book Medical Publishers, Chicago.Google Scholar
  90. 90.
    Dawes, G. S., 1973, Breathing and rapid eye movement sleep before birth, in: Foetal and Neonatal Physiology, Proceedings of the Sir J. Barcroft Centenary Symposium, pp. 49–62, Cambridge University Press.Google Scholar
  91. 91.
    Dawes, G. S., and Mott, J. C., 1959, The increase in oxygen consumption of the lamb after birth, J. Physiol. 146:295–315.PubMedGoogle Scholar
  92. 92.
    Dawes, G. S., and Mott, J. C., 1959, Reflex respiratory activity in the new-born rabbit, J. Physiol. 145:85–97.PubMedGoogle Scholar
  93. 93.
    Dawes, G. S., and Mott, J. C., 1964, Changes in oxygen distribution and consumption in foetal lambs with variations in umbilical blood flow, J. Physiol. 170:524–540.PubMedGoogle Scholar
  94. 94.
    Dawes, G. S., Duncan, S. L. B., Lewis, B. V., Merlet, C. L., Owen-Thomas, J. B., and Reeves, J. T., 1969, Hypoxaemia and aortic chemoreceptor function in foetal lambs, J. Physiol. 201:105–116.PubMedGoogle Scholar
  95. 95.
    Dawes, G. S., Fox, H. E., Leduc, B. M., Liggins, G. C., and Richards, R. T., 1970, Respiratory movements and paradoxical sleep in foetal lamb, J. Physiol. 210:47p, 48p.Google Scholar
  96. 96.
    Dawes, G. S., Fox, H. E., Leduc, B. M., Liggins, G. C., and Richards, R. T., 1972, Respiratory movements and rapid eye movement sleep in the foetal lamb, J. Physiol. 220:119–143.PubMedGoogle Scholar
  97. 97.
    Dawes, G. S., Mott, J. C., and Widdicombe, J. G., 1954, The foetal circulation in the lamb, J. Physiol. 126:563–587.PubMedGoogle Scholar
  98. 98.
    Day, R. L., Caliguiri, L., Kamenski, C., and Ehrich, F., 1964, Body temperature and survival of premature infants, Pediatrics 34:171–181.PubMedGoogle Scholar
  99. 99.
    de Castro, F., 1928, Sur la structure et l’innervation du sinus carotidien de l’homme et des mammifères. Nouveau faits sur l’innervation et la fonction du glomus caroticum. **études anatomiques et physiologiques, Trab. Inst. Cajal Invest. Biol. 25:331–380.Google Scholar
  100. 100.
    de Castro, F., 1951, Sur la structure de la synapse dans les chemorecepteurs: Leur mécanisme d’excitation et rôle dans la circulation sanguine locale, Acta Physiol. Scand. 22:14–43.Google Scholar
  101. 101.
    Deeds-Mattingly, M., 1936, Absorptive area and volume of chorionic villi in circumvallate placentas, Amer. J. Anat. 59:485–507.Google Scholar
  102. 102.
    Dodds, G. S., 1922, The area of the chorionic villi in the full term placenta, Anat. Rec. 24:287–294.Google Scholar
  103. 103.
    Döring, G. K., and Loeschcke, H. H., 1947, Atmung and Säure-Basengleichgewichte in der Schwangerschaft, Arch. Gesamte Physiol. 249:437–451.Google Scholar
  104. 104.
    Döring, G. K., Loeschcke, H. H., and Ochwadt, B., 1950, Weitere Untersuchungen über die Wirkung der Sexualhormone auf die Atmung, Arch. Gesamte Physiol 252:216–230.Google Scholar
  105. 105.
    Downing, S. E., and Lee, J. C., 1975, Laryngeal chemosensitivity: A possible mechanism for sudden infant death, Pediatrics 55:640–649.PubMedGoogle Scholar
  106. 106.
    Eastman, N. J., 1930, Foetal blood studies, Bull. Johns Hopkins Hosp. 47:221–230.Google Scholar
  107. 107.
    Eastman, N. J., 1932, Foetal blood studies. III. The chemical nature of asphyxia neonatorum and its bearing on certain practical problems, Bull. Johns Hopkins Hosp. 50:39–50.Google Scholar
  108. 108.
    Elliott, F. M., 1964, The pulmonary artery system in normal and diseased lungs: Structure in relation to pattern of branching, Ph.D. thesis, University of London.Google Scholar
  109. 109.
    Emmanouilides, G. C., Hobel, C. J., Yashiro, K., and Klyman, G., 1972, Fetal responses to maternal exercise in the sheep, Amer. J. Obstet. Gynecol. 112:130–137.Google Scholar
  110. 110.
    Eyzaguirre, C., and Lewin, J., 1961, Chemoreceptor activity of the carotid body of the cat, J. Physiol. 159:222–237.PubMedGoogle Scholar
  111. 111.
    Eyzaguirre, C., and Lewin, J., 1961, Effect of different oxygen tensions on the carotid body in vitro J. Physiol. 159:238–250.Google Scholar
  112. 112.
    Faber, J. J., and Green, T. J., 1972, Foetal placental blood flow in the lamb, J. Physiol. 223:375–393.PubMedGoogle Scholar
  113. 113.
    Fischer, W. M., Vogel, H. R., and Thews, G., 1965, Der Säure-Basenstatus und die CO2-Trans-portfunktion des mütterlichen und fetalen Blutes zum Zeitpunkt der Geburt, Arch. Gesamte Physiol. 286:220–237.Google Scholar
  114. 114.
    Freda, V. J., and Adamsons, K., 1964, Exchange transfusion in utero, report of a case, Amer. J. Obstet. Gynecol. 89:817–821.Google Scholar
  115. 115.
    Freese, U. E., 1973, Morphological determinants in O2 transfer across the human and rhesus hemo-chorial placenta, Adv. Exp. Med. Biol. 37:1027–1039.PubMedGoogle Scholar
  116. 116.
    Gare, D. J., Shime, J., Paul, W. M, and Hoskins, M., 1969, Oxygen administration during labor, Amer. J. Obstet. Gynecol. 105:954–961.Google Scholar
  117. 117.
    Goodlin, R. C., and Kaiser, I. H., 1957, The effect of ammonium chloride induced maternal acidosis on the human fetus at term. I. pH, hemoglobin, blood gases, Amer. J. Med. Sci. 233:662–673.PubMedGoogle Scholar
  118. 118.
    Goormaghtigh, N., and Pannier, R., 1939, Les Paraganglions du coeur et des zones vasosensibles carotidienne et cardio-aortique chez le chat adulte, Arch. Biol. Paris 50:455–533.Google Scholar
  119. 119.
    Grahn, D., and Krutchman, J., 1963, Variation in neonatal death rate and birth weight in the United States and possible relations to environmental radiation, geology and altitude, Amer. J. Hum. Genet. 15:329–352.PubMedGoogle Scholar
  120. 120.
    Gurtner, G. H., and Burns, B., 1972, Possible facilitated transport of oxygen across the placenta, Nature (London) 240:473–475.Google Scholar
  121. 121.
    Gurtner, G. H., and Burns, B., 1973, The role of cytochrome P-450 of placenta in facilitated oxygen diffusion, Drug Metab. Dispos. 1:368–373.PubMedGoogle Scholar
  122. 122.
    Hamilton, L. A., and Behrman, R. E., 1972, Intra-amniotic infusion of bicarbonate in the treatment of human fetal acidosis, Amer. J. Obstet. Gynecol. 112:834–847.Google Scholar
  123. 123.
    Harned, H. S., Jr., and Ferreiro, J., 1973, Initiation of breathing by cold stimulation: Effects of change in ambient temperature on respiratory activity of the full-term fetal lamb, J. Pediatr. 83:663–669.PubMedGoogle Scholar
  124. 124.
    Harned, H. S., Jr., and Ferreiro, J., 1974, Unpublished observations.Google Scholar
  125. 125.
    Harned, H. S., Jr., and Herrington, R. T., 1968, Unpublished observations.Google Scholar
  126. 126.
    Harned, H. S., Jr., Griffin, C. A., Berryhill, W. S., Jr., MacKinney, L. G., and Sugioka, K., 1967, Role of carotid chemoreceptors in the initiation of effective breathing of the lamb at term, Pediatrics 39:329–336.PubMedGoogle Scholar
  127. 127.
    Harned, H. S., Jr., Griffin, C. A., III, Berryhill, W. S., Jr., MacKinney, L. G., and Sugioka, K., 1968, Role of hypoxia and pH decrease, in initiation of respiration, in: Intrauterine Dangers to the Foetus, Proceedings of a Symposium, Prague, Oct. 11–14, 1966, pp. 121–125, Excerpta Medica Foundation, Amsterdam.Google Scholar
  128. 128.
    Harned, H. S., Jr., Herrington, R. T., and Ferreiro, J., 1970, The effects of immersion and temperature on the respiration of newly born lambs, Pediatrics 45:598–605.PubMedGoogle Scholar
  129. 129.
    Harned, H. S., Jr., Herrington, R. T., Griffin, C. A., III, Berryhill, W. S., Jr., and MacKinney, L. G., 1968, Respiratory effects of division of the carotid sinus nerve in the lamb soon after the initiation of breathing, Pediatr. Res. 2:264–270.PubMedGoogle Scholar
  130. 130.
    Harned, H. S., Jr., MacKinney, L. G., Berryhill, W. S., and Holmes, C. K., 1966, Effects of hypoxia and acidity on the initiation of breathing in the fetal lamb at term, Amer. J. Dis. Child. 112:334–342.PubMedGoogle Scholar
  131. 131.
    Harned, H. S., Jr., Rowshan, G., MacKinney, L. G., and Sugioka, K., 1964, Relationships of PO2, PCO2 and pH to onset of breathing of the term lamb as studied by a flow-through cuvette electrode assembly, Pediatrics 33:672–681.PubMedGoogle Scholar
  132. 132.
    Haselhorst, G., and Stromberger, K., 1931, Über den Gasgehalte des Nabelschnurblutes vor und nach der Geburt des Kindes und über den Gasaustausch in der Plazenta, Z. Geburtshilfe Gynaekol. 100:48, 49.Google Scholar
  133. 133.
    Hasselbalch, K. A., 1912, Ein Beitrag zur Respirationsphysiologie der Gravidität, Skand. Arch. Physiol. 27:1–12.Google Scholar
  134. 134.
    Head, H., 1889, On the regulation of respiration, J. Physiol. 10:1–70.PubMedGoogle Scholar
  135. 135.
    Heese, H. de V., Davey, D. A., Rorke, M., and Molteno, C., 1973, Effect of maternal anesthesia on oxygenation and acid-base status of the newborn infant, S. Afr. Med. J. 47:1991–1999.PubMedGoogle Scholar
  136. 136.
    Hendricks, C. H., 1957, Studies in lactic acid metabolism in pregnancy and labor, Amer. J. Obstet. Gynecol. 73:492–506.Google Scholar
  137. 137.
    Hering, E., 1868, Die Selbststeuerung der Athmung durch den Nervus vagus, Sitzungsber. Akad. Wiss. Wien Abt. II 57:672–677.Google Scholar
  138. 138.
    Herrington, R. T., Harned, H. S., Jr., Ferreiro, J., and Griffin, C. A., 1971, The role of the central nervous system in perinatal respiration. Studies of the chemoregulatory mechanisms in the term lamb, Pediatrics 47:857–864.PubMedGoogle Scholar
  139. 139.
    Heymans, C., and Bouckoert, J. J., 1930, Sinus caroticus and respiratory reflexes: Cerebral blood flow and respiration; adrenaline apnoea, J. Physiol. 69:254–266.PubMedGoogle Scholar
  140. 140.
    Heymans, C., and Neil, E., 1958, Reflexogenic Areas of the Cardiovascular System, pp. 131–136, Churchill, London.Google Scholar
  141. 141.
    Heymans, J. F., and Heymans, C., 1926, Stimulation et inhibition réflexes des mouvements respiratoires de la tete “isolée ” du chien B dont le coeur-poumon “isole” est perfusé par un chien C., C. R. Soc. Biol. (Paris) 95:1118–1121.Google Scholar
  142. 142.
    Hill, E. P., Power, G. G., and Longo, L. D., 1972, A mathematical model of placental O2 transfer with consideration of hemoglobin reaction rates, Amer. J. Physiol. 222:721–729.PubMedGoogle Scholar
  143. 143.
    Hill, E. P., Power, G. G., and Longo, L. D., 1973, A mathematical model of carbon dioxide transfer in the placenta and its interaction with oxygen, Amer. J. Physiol. 224:283–299.PubMedGoogle Scholar
  144. 144.
    Hill, J. R., 1959, The oxygen consumption of newborn and adult mammals. Its dependence on the oxygen tension of the inspired air and on environmental temperature, J. Physiol. 149:346–373.PubMedGoogle Scholar
  145. 145.
    Holland, R. A. B., 1973, Placental oxygen gradients due to diffusion and chemical reaction, Adv. Exp. Med. Biol. 37:1055–1059.PubMedGoogle Scholar
  146. 146.
    Hörmann, G., 1953, Ein Beitrag zur funktionellen Morphologie der menschlichen Placenta, Arch. Gynäkol. 184:109–123.Google Scholar
  147. 147.
    Hornbein, T. F., Griffo, Z. J., and Roos, A., 1961, Quantitation of the chemoreceptor activity: Interrelation of hypoxia and hypercapnia, J. Neuro-physiol. 24:561–568.Google Scholar
  148. 148.
    Huckabee, W. F., Metcalfe, J., Prystowsky, H., and Barron, D. H., 1962, Insufficiency of O2 supply to pregnant uterus, Amer. J. Physiol. 202:198–204.PubMedGoogle Scholar
  149. 149.
    Huggett, A. St. G., and Hammond, J., 1952, Physiology of the placenta, in: Marshall’s Physiology of Reproduction (A. S. Parkes, ed.), Vol. 2, pp. 312–397, Longmans, Green and Co., London.Google Scholar
  150. 150.
    James, E. J., Raye, J. R., Gresham, E. L., Makowski, E. L., Meschia, G., and Battaglia, F. C., 1972, Fetal oxygen consumption, carbon dioxide production, and glucose uptake in a chronic sheep preparation, Pediatrics 50:361–371.PubMedGoogle Scholar
  151. 151.
    James, L. S., 1960, Acidosis of the newborn and its relation to birth asphyxia, Acta Paediatr. 49 (Suppl. 122): 17–28.Google Scholar
  152. 152.
    James, L. S., and Adamsons, K., 1964, Respiratory physiology of the fetus and newborn infant, N. Engl. J.Med. 271:1352–1360.PubMedGoogle Scholar
  153. 153.
    James, L. S., Weisbrot, I. M., Prince, C. E., Holaday, D. A., and Apgar, V., 1958, The acid-base status of human infants in relation to birth asphyxia and the onset of respiration, J. Pediatr. 52:379–394.PubMedGoogle Scholar
  154. 154.
    Jansen, A. H., and Chernick, V., 1974, Cardio-respiratory response to central cyanide in fetal sheep, J. Appl. Physiol 37:18–21.PubMedGoogle Scholar
  155. 155.
    Joels, N., and Neil, E., 1963, The excitation mechanism of the carotid body, Br. Med. Bull. 19:21–24.Google Scholar
  156. 156.
    Johnson, G. H., Brinkman, C. R., III, and Assali, N. S., 1972, Response of the hypoxic fetal and neonatal lamb to administration of base solution, Amer. J. Obstet. Gynecol. 114:914–922.Google Scholar
  157. 157.
    Johnson, P., Robinson, J. S., and Salisbury, D., 1973, The onset and control of breathing after birth, in: Foetal and Neonatal Physiology, Proceedings of the Sir J. Barcroft Centenary Symposium, pp. 217–221, Cambridge University Press, Cambridge.Google Scholar
  158. 158.
    Kaiser, I. H., Cummings, J. N., Reynolds, S. R. M., and Marburger, J. P., 1958, Acclimatization response of the pregnant ewe and fetal lamb to diminished ambient pressure, J. Appl. Physiol. 13:171–177.PubMedGoogle Scholar
  159. 159.
    Kaplan, S., and Assali, N. S., 1972, Disorders of the fetal and neonatal circulation, in: Pathophysiology of Gestation (N. S. Assali, ed.), Vol. 3, pp. 1–86, Academic Press, New York.Google Scholar
  160. 160.
    Khazin, A. F., Hon, E. H., and Hehre, F. W., 1971, Effects of maternal hyperoxia on the fetus. I. Oxygen tension, Amer. J. Obstet. Gynecol. 109:628–637.Google Scholar
  161. 161.
    Krauss, A. N., Thibeault, D. W., and Auld, P. A., 1972, Acid-base balance in cerebrospinal fluid of newborn infants, Biol. Neonat. 21:25–34.Google Scholar
  162. 162.
    Lambertsen, C., Hall, J. P., Wollman, H., and Goodman, M. W., 1963, Quantitative interactions of increased PO2 and PCO2 upon respiration in man, Ann. N Y. Acad. Sci. 109:731–742.PubMedGoogle Scholar
  163. 163.
    Liggins, G. C., and Howie, R. N., 1972, A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants, Pediatrics 50:515–534.PubMedGoogle Scholar
  164. 164.
    Loeschcke, H. H., 1957, Intracranielle Chemo-rezeptoren mit Wirkung auf die Atmung, Helv. Physiol. Pharmacol. Acta 15:25, 26.Google Scholar
  165. 165.
    Loeschcke, H. H., and Koepchen, H. P., 1958, Versuche zur Lokalisation des Angriffsortes der Atmungs- und Kreislaufwirkung von Novocain im Liquor cerebrospinalis, Arch. Gesamte Physiol. 266:628–641.Google Scholar
  166. 166.
    Longo, L. D., Delivoria-Papadopoulos, M., and Forster, R. E., II, 1974, Placental CO2 transfer after fetal carbonic anhydrase inhibition, Amer. J. Physiol. 226:705–710.Google Scholar
  167. 167.
    Longo, L. D., Hill, E. P., and Power, G. G., 1972, Theoretic analysis of factors affecting placental O2 transfer, Amer. J. Physiol. 222:730–739.PubMedGoogle Scholar
  168. 168.
    Longmum, I. S., 1971, in: Microcirculatory Approaches to Current Therapeutic Problems, Symposium, Sixth European Conference on Microcirculation, Aalborg, pp. 3–7, S. Karger, Basel.Google Scholar
  169. 169.
    Lumley, J., and Wood, C., 1973, Effect of changes in maternal oxygen and carbon dioxide tensions on the fetus, in: Clinical Anesthiology, Vol. 10, No. 2, Parturition and Perinatology (G. F. Marx, ed.), Chapter 9, pp. 122–137, F. A. Davis Co., Philadelphia.Google Scholar
  170. 170.
    MacKay, R. B., 1957, Observations on the oxygenation of the foetus in normal and abnormal pregnancy, J. Obstet. Gynaecol. Br. Emp. 64:185–197.PubMedGoogle Scholar
  171. 171.
    MacKinney, L. G., Goldberg, I. D., Ehrlich, F. E., and Freymann, K. C., 1958, Chemical analyses of blood from the umbilical cord of the newborn: Relation to fetal maturity and perinatal distress, Pediatrics 21:555–564.PubMedGoogle Scholar
  172. 172.
    Makowski, E. L., Battaglia, F. C., Meschia, G., Behrman, R. E., Schruefer, J., Seeds, A. E., and Bruns, P., 1968, Effect of maternal exposure to high altitude on fetal oxygenation, Amer. J. Obstet. Gynecol. 100:852–861.Google Scholar
  173. 173.
    Makowski, E. L., Meschia, G., Droequmueller, W., and Battaglia, F. C., 1968, Distribution of uterine blood flow in the pregnant sheep, Amer. J. Obstet. Gynecol. 101:409–412.Google Scholar
  174. 174.
    Maloney, J. E., Adamson, T. M., Broderecky, V., Cranage, S., Lambert, T., and Ritchie, B. C., 1974, Respiratory activity in the foetal lamb, Proc. Aust. Physiol. Pharmacol. Soc, May 22–24.Google Scholar
  175. 175.
    Manning, F., Wyn Pugh, E., and Boddy, K., 1975, Effect of cigarette smoking on fetal breathing movements in normal pregnancies, Br. Med. J. 1:552–553.PubMedGoogle Scholar
  176. 176.
    Merlet, C., Hoerter, J., Devilleneuve, C., and Tchobroutsky, C., 1970, Mise en evidence de movements respiratoires chez le foetus d’agneau in utero au cours du dernier mois de la gestation, C. R. Acad. Sci. Paris 270:2462–2464.Google Scholar
  177. 177.
    Meschia, G., Cotter, J. R., Breathnach, C. S., and Barron, D. H., 1965, The haemoglobin, oxygen, carbon dioxide, and hydrogen ion concentration in the umbilical bloods of sheep and goats as sampled via indwelling catheters, Q. J. Exp. Physiol. 50:185–195.Google Scholar
  178. 178.
    Meschia, G., Cotter, J. R., Breathnach, C. S., and Barron, D. H., 1965, The diffusibility of oxygen across the sheep placenta, Q. J. Exp. Physiol. 50:466–480.Google Scholar
  179. 179.
    Meschia, G., Cotter, J. R., Makowski, E. L., and Barron, D. H., 1967, Simultaneous measurements of uterine and umbilical blood flows and oxygen uptakes, Q. J. Exp. Physiol. 52:1–18.Google Scholar
  180. 180.
    Meschia, G., Hellegers, A., Prystowsky, H., Huckabee, W., Metcalfe, J., and Barron, D. H., 1961, Oxygen dissociation curves of the bloods of adult and fetal sheep at high altitude, Q. J. Exp. Physiol. 46:156–160.Google Scholar
  181. 181.
    Metcalfe, J., 1967, The oxygen supply of the fetus, in: Development of the Lung—Ciba Found. Symp. (A. V. S. Reuck and R. Porter, eds.), pp. 258–271, Little, Brown and Co., Boston.Google Scholar
  182. 182.
    Metcalfe, J., 1969, Uterine oxygen supply and fetal health, Yale J. Biol. Med. 42:166–179.PubMedGoogle Scholar
  183. 183.
    Metcalfe, J., Bartels, H., and Moll, W., 1967, Gas exchange in the pregnant uterus, Physiol. Rev. 47:782–838.PubMedGoogle Scholar
  184. 184.
    Metcalfe, J., Meschia, G., Hellegers, A., Prystowsky, H., Huckabee, W., and Barron, D. H., 1962, Observations on the placental exchange of the respiratory gases in pregnant ewes at high altitude, Q.J. Exp. Physiol. 47:74–92.Google Scholar
  185. 185.
    Metcalfe, J., Meschia, G., Hellegers, A., Prystowsky, H., Huckabee, W., and Barron, D. H., 1962, Observations on the growth rates and organ weights of fetal sheep at altitude and sea level, Q.J. Exp. Physiol. 47:305–313.Google Scholar
  186. 186.
    Metcalfe, J., Moll, W., Bartels, H., Hilpert, P., and Parer, J. T., 1965, Transfer of carbon monoxide and nitrous oxide in the artificially perfused sheep placenta, Circ. Res. 16:95–101.PubMedGoogle Scholar
  187. 187.
    Metcalfe, J., Romney, S. L., Ramsey, L. H., Reid, D. E., and Burwell, C. S., 1955, Estimation of uterine blood flow in normal human pregnancy at term, J. Clin. Invest. 34:1632–1638.PubMedGoogle Scholar
  188. 188.
    Minkowski, A., and Swierczewski, E., 1959, in: Oxygen Supply to the Human Foetus (J. Walker and A. C. Turnbull, eds.), p. 237, Blackwell Scientific Publications, Oxford.Google Scholar
  189. 189.
    Mitchell, R. A., 1965, The regulation of respiration in metabolic acidosis and alkalosis, in: Cerebrospinal Fluid and Its Regulation of Ventilation (C. M. Brooks, F. F. Kao, and B. B. Lloyd, eds.), pp. 109–131, F. A. Davis Co., Philadelphia.Google Scholar
  190. 190.
    Mitchell, R. A., Loeschcke, H. H., Sevringhaus, J. W., Richardson, B. W., and Massion, W. H., 1963, Regions of respiratory chemosensitivity on the surface of the medulla, Ann. N. Y. Acad. Sci. 109:661–681.Google Scholar
  191. 191.
    Moll, W., 1973, Placental function and oxygenation in the fetus, Adv. Exp. Med. Biol. 37:1017–1026.PubMedGoogle Scholar
  192. 192.
    Morishima, H. O., Daniel, S. S., Adamsons, K., and James, L. S., 1965, Effects of positive pressure ventilation of the mother upon the acid-base state of the fetus, Amer. J. Obstet. Gynecol. 93:269–273.Google Scholar
  193. 193.
    Morishima, H. O., Moya, F., Bossers, A. C., and Daniel, S. S., 1964, Adverse effects of maternal hypocapnea on the newborn guinea pig, Amer. J. Obstet. Gynecol. 88:524–529.Google Scholar
  194. 194.
    Motoyama, E. K., Rivard, G., Acheson, F., and Cook, C. D., 1966, Adverse effect of maternal hyperventilation on the foetus, Lancet 1:286–288.PubMedGoogle Scholar
  195. 195.
    Mott, J. C., 1961, The ability of young mammals to withstand total oxygen lack, Br. Med. Bull. 17:144–148.PubMedGoogle Scholar
  196. 196.
    Moya, F., Morishima, H. O., Shnider, S. M., and James, L. S., 1965, Influence of maternal hyperventilation on the newborn infant, Amer. J. Obstet. Gynecol. 91:76–84.Google Scholar
  197. 197.
    Myers, R. E., 1973, Threshold values of oxygen deficiency leading to cardiovascular and brain pathologic changes in term monkey fetuses, Adv. Exp. Med. Biol. 37:1047–1054.PubMedGoogle Scholar
  198. 198.
    Oliver, T. K., Jr. (ed.), 1964, Heat production, in: Thermoregulation of the Newly Born Supplement No. 2, Reports of Ross Conferences on Pediatric Research, Ross Laboratories, Columbus, Ohio.Google Scholar
  199. 199.
    Orzalezi, M. M., and Hay, W. W., 1971, The regulation of oxygen affinity of fetal blood. I. In vitro experiments and results in normal infants, Pediatrics 48:857–864.Google Scholar
  200. 200.
    Otey, E. S., and Bernthal, T., 1960, Interaction of hypoxia and hypercapnia at the carotid bodies in chemoreflex stimulation of breathing, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 19:373.Google Scholar
  201. 201.
    Pagtakhan, R. D., Faridy, E. E., and Chernick, V., 1971, Interaction between arterial PO2 and PCO2 in the initiation of respiration of fetal sheep, J. Appl. Physiol. 30:382–387.PubMedGoogle Scholar
  202. 202.
    Panigel, M., 1973, Experimental models for in vivo and in vitro investigations on placental hemodynamics and oxygen supply to the fetus, Adv. Exp. Med. Biol. 37:1061–1065.PubMedGoogle Scholar
  203. 203.
    Parer, J. T., de Lannoy, C. W., Hoversland, A. S., and Metcalfe, J., 1968, Effect of decreased uterine blood flow on uterine oxygen consumption in pregnant macaques, Amer. J. Obstet. Gynecol. 100:813–820.Google Scholar
  204. 204.
    Parmentier, R., 1962, L’aération néonatale du poumon. Contribution expérimentale et anatomo-clinique, Rev. Belg. Pathol. 29:123–244.Google Scholar
  205. 205.
    Ponte, J., and Purves, M. J., 1973, Types of afferent nervous activity which may be measured in the vagus nerve of the sheep foetus, J. Physiol. 229:51–76.PubMedGoogle Scholar
  206. 206.
    Ponte, J., and Purves, M. J., 1974, The role of the carotid body chemoreceptors and carotid sinus baro-receptors in the control of cerebral blood vessels, J. Physiol. 237:315–340.PubMedGoogle Scholar
  207. 207.
    Power, G. G., and Longo, L. D., 1973, Sluice flow in placenta: Maternal vascular pressure effects on fetal circulation, Amer. J. Physiol. 225:1490–1496.PubMedGoogle Scholar
  208. 208.
    Power, G. G., Hill, E. P., and Longo, L. D., 1972, Analysis of uneven distribution of diffusing capacity and blood flow in the placenta, Amer. J. Physiol. 222:740–746.PubMedGoogle Scholar
  209. 209.
    Power, G. G., Longo, L. D., Wagner, H. N., Jr., Kuhl, D. E., and Forster, R. E., III, 1967, Uneven distribution of maternal and fetal placental blood flow, as demonstrated using macroaggregates, and its response to hypoxia, J. Clin. Invest. 46:2053–2063.PubMedGoogle Scholar
  210. 210.
    Purves, M. J., 1966, The effects of hypoxia in the new-born lamb before and after denervation of the carotid chemoreceptors, J. Physiol. 185:60–77.PubMedGoogle Scholar
  211. 211.
    Purves, M. J., 1970, The effect of hypoxia, hyper-capnia, and hypotension upon carotid body blood flow and oxygen consumption in the cat, J. Physiol. 209:395–416.PubMedGoogle Scholar
  212. 212.
    Purves, M. J., 1974, Onset of respiration at birth, Arch. Dis. Child. 49:333–343.PubMedGoogle Scholar
  213. 213.
    Purves, M. J., and Biscoe, T. J., 1966, Development of chemoreceptor activity, Br. Med. Bull. 22:56–60.PubMedGoogle Scholar
  214. 214.
    Preyer, W., 1888, Specielle Physiologie des Embryo: Untersuchungen über die Lebenscheingun vor der Geburt, Grieben, Leipzig.Google Scholar
  215. 215.
    Prystowsky, H., 1957, Fetal blood studies. VII. The oxygen pressure gradient between the maternal and fetal bloods of the human in normal and abnormal pregnancy, Bull. Johns Hopkins Hosp. 101:48–56.PubMedGoogle Scholar
  216. 216.
    Prystowsky, H., Hellegers, A., and Bruns, P., 1960, Fetal blood studies. XVIII. Supplementary observations on the oxygen pressure gradient between the maternal and fetal bloods of humans, Surg. Gynecol. Obstet. 110:495, 496.Google Scholar
  217. 217.
    Prystowsky, H., Hellegers, A., Meschia, G., Metcalfe, J., Huckabee, W., and Barron, D. H., 1960, The blood volume of fetuses carried by ewes at high altitude, Q.J. Exp. Physiol. 45:292–298.Google Scholar
  218. 218.
    Quilligan, E. J., and Cibils, L., 1964, Oxygen tension in the intervillous space, Amer. J. Obstet. Gynecol. 88:572–577.Google Scholar
  219. 219.
    Ramsey, E. M., 1962, Circulation in the intervillous space of the primate placenta, Amer. J. Obstet. Gynecol. 84:1649–1663.Google Scholar
  220. 220.
    Ramsey, E. M., 1965, Circulation of the placenta, in: Symposium on the Placenta: Birth Defects (D. Bergsma, ed.), Vol. I, pp. 5–12, Original Article Series, National Foundation—March of Dimes, New York.Google Scholar
  221. 221.
    Rankin, J. H. G., 1973, Maternal alkalosis and fetal oxygenation, Adv. Exp. Med. Biol. 37:1067–1074.PubMedGoogle Scholar
  222. 222.
    Reid, L., 1967, The embryology of the lung, in: Development of the LungCiba Found. Symp. (A. V. S. de Reuck and R. Porter, eds.), pp. 109–124, Little, Brown and Co., Boston.Google Scholar
  223. 223.
    Reynolds, S. R. M., 1961, Sensory deprivation, weightlessness, and antigravity mechanisms. The problem of fetal adaptation to a floating existence, Aerospace Med. 32:1061–1067.PubMedGoogle Scholar
  224. 224.
    Reynolds, S. R. M., and Mackie, J. D., 1961, Development of chemoreceptor response sensitivity: Studies in fetuses, lambs and ewes, Amer. J. Physiol. 201:239–250.PubMedGoogle Scholar
  225. 225.
    Rigatto, H., and Brady, J. P., 1972, Periodic breathing and apnea in preterm infants. I. Evidence for hypoventilation possibly due to central respiratory depression, Pediatrics 50:202–218.PubMedGoogle Scholar
  226. 226.
    Rigatto, H., and Brady, J. P., 1972, Periodic breathing and apnea in preterm infants. II. Hypoxia as a primary event, Pediatrics 50:219–228.PubMedGoogle Scholar
  227. 227.
    Romney, S. L., Reid, D. E., Metcalfe, J., and Burwell, C. S., 1955, Oxygen utilization by the human fetus in utero, Amer. J. Obstet. Gynecol. 70:791–797.Google Scholar
  228. 228.
    Rooth, G., 1963, Foetal respiration, Acta Paediatr. 52:22–35.PubMedGoogle Scholar
  229. 229.
    Rooth, G., 1964, Early detection and prevention of foetal acidosis, Lancet 2:290–293.Google Scholar
  230. 230.
    Rooth, G., and Sjöstedt, S., 1962, The placental transfer of gases and fixed acids, Arch. Dis. Child. 37:366–370.PubMedGoogle Scholar
  231. 231.
    Rooth, G., Sjöstedt, S., and Caligara, F., 1961, Hydrogen concentration, carbon dioxide tension and acid base balance in blood of human umbilical cord and intervillous space of placenta, Arch. Dis. Child. 36:278–285.PubMedGoogle Scholar
  232. 232.
    Rudolph, A. M., and Heymann, M. A., 1967, The circulation of the fetus in utero. Methods for studying distribution of blood flow, cardiac output and organ blood flow, Circ. Res. 21:163–184.PubMedGoogle Scholar
  233. 233.
    Rudolph, A. M., and Yuan, S., 1965, The pattern of pulmonary vascular response to hypoxia, J. Pediatr. 67:929.Google Scholar
  234. 234.
    Saling, E., 1966, Amnioscopy and foetal blood sampling: Observations on foetal acidosis, Arch. Dis. Child. 41:472–476.PubMedGoogle Scholar
  235. 235.
    Saling, E., 1968, Foetal and Neonatal Hypoxia in Relation to Clinical Obstetric Practice, Edward Arnold, London.Google Scholar
  236. 236.
    Scholander, P. F., 1959, Experimental studies on asphyxia in animals, in: Oxygen Supply to the Human Foetus (J. Walker and A. C. Turnbull, eds.), pp. 267–274, Blackwell Scientific Publications, Oxford.Google Scholar
  237. 237.
    Scholander, P. F., 1964, Animals in aquatic environments: Diving mammals and birds, in: Handbook of Physiology. IV. Adaptation to the Environment (D. B. Dill, ed.), Chapt. 45, pp. 729–739, American Physiological Society, Washington, D.C.Google Scholar
  238. 238.
    Schumacher, S., 1938, Über die Bedeutung der arteriovenösen Anastomosen und der epitheloiden Muskelzellen (Quellzellen), Z. Mikrosk-Anat. Forsch. 43:107–130.Google Scholar
  239. 239.
    Scibetta, J. J., Rosen, M. G., Hochberg, C. J., and Chik, L., 1971, Human fetal brain response to sound during labor, Amer. J. Obstet. Gynecol. 109:82–85.Google Scholar
  240. 240.
    Sevringhaus, J. W., Swenson, E. W., Finley, T. N., Lategola, M. T., and Williams, J., 1961, Unilateral hypoventilation produced in dogs by occluding one pulmonary artery, J. Appl. Physiol. 16:53–60.Google Scholar
  241. 241.
    Someroff, A. J., 1971, Respiration and sucking as components of the orienting reaction in newborns, Psychophysiology 7:213–222.Google Scholar
  242. 242.
    Sorokin, S., 1959, The development in vitro of mammalian lungs, Anat. Rec. 134:642, 643.Google Scholar
  243. 243.
    Sorokin, S., 1960, Histochemical events in developing human lungs, Acta Anat. (Basel) 40:105–119.Google Scholar
  244. 244.
    Stembera, Z. K., Hodr, J., and Janda, J., 1965, Umbilical blood flow in healthy newborn infants during the first minutes after birth, Amer. J. Obstet Gynecol. 91:568–574.Google Scholar
  245. 245.
    Stembera, Z. K., Hodr, J., and Janda, J., 1968, Umbilical blood flow in newborn infants who suffered intrauterine hypoxia, Amer. J. Obstet. Gynecol. 101:546–553.Google Scholar
  246. 246.
    Stembera, Z. K., Hodr, J., Kittrich, M., and Janda, J., 1972, Fetoplacental circulation in the umbilical cord when coiled around the fetal neck, Biol. Neonat. 20:120–126.Google Scholar
  247. 247.
    Stenger, V. S., Eitzman, D., Andersen, T., Cotter, J., and Prystowsky, H., 1965, A study of the oxygenation of the fetus and newborn and its relation to that of the mother, Amer. J. Obstet. Gynecol. 93:376–385.Google Scholar
  248. 248.
    Stieve, H., 1941, Die Entwicklung und der Bau der menschlichen Plazenta. 2. Zotten, Zottenraumgitter und Gefasse in der zweiten Hälfte der Schwangerschaft, Z. Mikrosk.-Anat. Forsch. 50:1–120.Google Scholar
  249. 249.
    Storey, A. T., and Johnson, P., 1975, Laryngeal water receptors initiating apnea in the lamb, Exp. Neurol. 47:42–55.PubMedGoogle Scholar
  250. 250.
    Tchobroutsky, C., 1967, Personal communication.Google Scholar
  251. 251.
    Thalme, B., 1967, Electrolyte and acid-base balance in fetal and maternal blood: An experimental and a clinical study, Acta Obstet. Gynecol. Scand. 45 (Suppl. 8):1–11S. Google Scholar
  252. 252.
    Thurlbeck, W. M., 1975, Postnatal growth and development of the lung, Amer. Rev. Respir. Dis. 111:803–844.Google Scholar
  253. 253.
    Tominaga, T., and Page, E. W., 1966, Accommodation of the human placenta to hypoxia, Amer. J. Obstet. Gynecol. 94:679–691.Google Scholar
  254. 254.
    Ullrich, J. R., and Ackerman, B. D., 1972, Changes in umbilical artery blood gas values with the onset of respiration, Biol. Neonat. 20:466–474.Google Scholar
  255. 255.
    Villee, C. A., 1958, The Placenta and Fetal Membranes, Williams and Wilkins Co., Baltimore.Google Scholar
  256. 256.
    Von Euler, U. S., Lilijestrand, G., and Zotterman, V., 1939, The excitation mechanism of the chemoreceptors of the carotid body, Skand. Arch. Physiol. 83:132–152.Google Scholar
  257. 257.
    Walker, D., Grimwade, J., and Wood, C., 1971, Intrauterine noise: A component of the fetal environment, Amer. J. Obstet. Gynecol. 109:91–95.Google Scholar
  258. 258.
    Widdicombe, J. G., 1954, The site of pulmonary stretch receptors in the cat, J. Physiol. 125:336–351.PubMedGoogle Scholar
  259. 259.
    Widdicombe, J. G., 1963, Respiratory reflexes from the lungs, Br. Med. Bull. 19:15–20.PubMedGoogle Scholar
  260. 260.
    Wilkin, P., and Bursztein, M., 1958, Etude quantitative de l’évolution, au cours de la grossesse, de la superficie de la membrane d’échange du placenta humain, in: Le Placenta Humain (Snoeck, ed.), Masson et Cie, Paris.Google Scholar
  261. 261.
    Williamson, C. S., 1916, Influence of age and sex on hemoglobin, Arch. Intern. Med. 18:505–528.Google Scholar
  262. 262.
    Wolkoff, A. S., Bawden, J. W., Flowers, C. E., and McGee, J. A., 1965, The effects of anesthesia on the unborn fetus, Amer. J. Obstet. Gynecol. 93:311–320.Google Scholar
  263. 263.
    Woodrum, D. E., Parer, J. T., Wennberg, R. P., and Hodson, W. A., 1972, Chemoreceptor response in initiation of breathing in the fetal lamb, J. Appl. Physiol. 33:120–125.PubMedGoogle Scholar
  264. 264.
    Wulf, H., 1959, Das Verhalten der Atemgase in den Nabelschnurgefässen nach der Geburt, Z. Gesamte Exp. Med. 132:136–148.PubMedGoogle Scholar
  265. 265.
    Wulf, H., 1962, Der Gasaustausch in der reifen Plazenta des Menschen, Z. Geburtshilfe Gynaekol. 158:117–124.Google Scholar
  266. 266.
    Wulf, H., 1964, The oxygen and carbon dioxide tension gradients in the human placenta at term, Amer. J. Obstet. Gynecol. 88:33–44.Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Herbert S. HarnedJr.
    • 1
  1. 1.Department of PediatricsUniversity of North Carolina School of MedicineChapel HillUSA

Personalised recommendations