Advertisement

Biochemistry of Muscle Development

  • Jean Claude Dreyfus
  • Fanny Schapira

Abstract

Among the factors that govern the development of muscle in young animals, many remain unknown. Advances in recent years have aimed at a better definition of the various types of muscle and a better knowledge of the enzymatic pattern of muscular tissue and of the synthesis of specific proteins. The development of tissue culture has given a new impetus to the study of myogenesis.

Keywords

Skeletal Muscle Creatine Kinase Chick Embryo Breast Muscle Slow Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appella, E., and Markert, C. L., 1961, Dissociation of lactate dehydrogenase units with guanidine hydrochloride, Biochem. Biophys. Res. Commun. 6:971.Google Scholar
  2. 2.
    Bacou, F., 1972, Evolution quantitative de l’aldolase, asparate transaminase, succinate deshydrogénase et acetylcholinesterase dans les muscles blancs et rouges de lapin au cours de la période postnatale, C. R. Soc. Biol. (Paris) 166:1037.Google Scholar
  3. 3.
    Barany, M., Gaetjens, E., Barany, K., and Karp, E., 1964, Comparative studies of rabbit cardiac and skeletal myosins, Arch. Biochem. 106:280.PubMedCrossRefGoogle Scholar
  4. 4.
    Beatty, C. H., Bassinger, G. M., and Bocek, R. M., 1965, Pentose cycle activity in muscle from fetal, neonatal and infant rhesus monkeys, Arch. Biochem. 117:275.CrossRefGoogle Scholar
  5. 5.
    Bocek, R. M., and Beatty, C. H., 1967, Glycogen metabolism in fetal, neonatal and infant muscle of the rhesus monkey, Pediatrics 40:412.PubMedGoogle Scholar
  6. 6.
    Boland, R., Martonosi, A., and Tillack, T. W., 1974, Developmental changes in the composition and function of sarcoplasmic reticulum, J. Biol. Chem. 249:612.PubMedGoogle Scholar
  7. 7.
    Boyd, J. O., 1960, Development of striated muscle, in: The Structure and Function of Muscle (G. H. Bourne, ed.), Vol. I, p. 63, Academic Press, New York.Google Scholar
  8. 8.
    Buckingham, M. D., Caput, D., Cohen, A., Whalen, R. G., and Gros, F., 1974, The synthesis and stability of cytoplasmic messenger RNA during myoblast differentiation in culture, Proc. Natl. Acad. Sci. U.S.A. 71:1466.PubMedCrossRefGoogle Scholar
  9. 9.
    Cahn, R. D., Kaplan, N. O., Levine, L., and Zwilling, E., 1962, Nature and development of lactic dehydrogenase, Science 136:962.PubMedCrossRefGoogle Scholar
  10. 10.
    Cosmos, E., 1966, Enzymatic activity of differentiating muscle fibers, Dev. Biol. 13:163.PubMedCrossRefGoogle Scholar
  11. 11.
    Cosmos, E., and Butler, J., 1967, Differentiation of fiber types in muscle of normal and dystrophic chickens, in: Exploratory Concepts in Muscular Dystrophy (A. T. Milhorat, ed.), p. 197, Excerpta Medica Foundation, New York.Google Scholar
  12. 12.
    Couteaux, R., 1941, Recherches sur Fhistogénèse du muscle strié des mammifères et la formation des plaques motrices, Bull. Biol. Fr. Belg. 75:101.Google Scholar
  13. 13.
    Couteaux, R., 1955, Localization of cholinesterases at neuromuscular junctions, Int. Rev. Cytol. 4:604.Google Scholar
  14. 14.
    Csapo, A., and Herrmann, H., 1951, Quantitative changes in contractile proteins of chick skeletal muscle during and after embryonic development, Amer. J. Physiol. 165:701.PubMedGoogle Scholar
  15. 15.
    Dance, N., and Watts, D. C., 1962, Comparison of creatine phosphotransferase from rabbit and brown-hare muscle, Biochem. J. 84:114.Google Scholar
  16. 16.
    Dawson, D. M., Eppenberger, M., and Kaplan, N. O., 1965, Creatine kinase: Evidence for a dimeric structure, Biochem. Biophys. Res. Commun. 21:346.PubMedCrossRefGoogle Scholar
  17. 17.
    Delain, D., and Wahrmann, J. P., 1975, Is fusion a trigger for myoblast differentiation?, Exp. Cell Res. 9:495.CrossRefGoogle Scholar
  18. 18.
    Delain, D., Meienhofer, M. C., Proux, D., and Schapira, F., 1973, Studies in myogenesis in vitro: Changes of creatine kinase, Phosphorylase and phos-phofructokinase isozymes, Differentiation 1:349.CrossRefGoogle Scholar
  19. 19.
    Dreyfus, J. C., and Schapira, F., 1967, Lactic de-hydrogenase isozymes, in: Methods and Achievements in Experimental Pathology (C. Bajusz, ed.), Harvard University Press, Cambridge, Massachusetts.Google Scholar
  20. 20.
    Dreyfus, J. C., Schapira, F., Schapira, G., and Demos, J., 1962, La lactico-déshydrogénase musculaire chez le myopathe: Persistance apparente du type foetal, C. R. Acad. Sci. Ser. D (Paris) 254:4384.Google Scholar
  21. 21.
    Dubowitz, V., 1963, Enzymic maturation of skeletal muscle, Nature (London) 197:1215.CrossRefGoogle Scholar
  22. 22.
    Dubowitz, V., 1966, Enzyme histochemistry of developing human muscle, Nature (London) 211:884.CrossRefGoogle Scholar
  23. 23.
    Dubowitz, V., 1967, Cross innervation of fast and slow muscle: Histochemical, physiological and biochemical studies, in: Exploratory Concepts in Muscular Dystrophy (A. T. Milhorat, ed.), p. 164, Excerpta Medica Foundation, New York.Google Scholar
  24. 24.
    Dubowitz, V., and Pearse, A. G. E., 1960, Reciprocal relationship of Phosphorylase and oxidative enzymes in skeletal muscle, Nature (London) 185:701.CrossRefGoogle Scholar
  25. 25.
    Dubowitz, V., and Pearse, A. G. E., 1961, Enzymic activity of normal and dystrophic human muscle: A histochemical study, J. Pathol. Bacteriol. 81:365.CrossRefGoogle Scholar
  26. 26.
    Engel, W. K., 1962, The essentiality of histo- and cytochemical studies of skeletal muscle in the investigation of neuromuscular diseases, Neurology (Minneapolis) 12:778.Google Scholar
  27. 27.
    Engel, W. K., Wanko, T., and Fenichel, G., 1964, Nemaline myopathy, Arch. Neurol. (Chicago) 11:22.CrossRefGoogle Scholar
  28. 28.
    Eppenberger, H. M. K., von Fellenberg, R., Richterich, R., and Aebi, H., 1962–1963, Die Ontogenese von zytoplasmitischen Enzymen beim Hühner Embryo, Enzymol. Bio. Clin. (Basel) 2:139.Google Scholar
  29. 29.
    Eppenberger, H. M. K., Richterich, R., and Aebi, H., 1964, The ontogeny of creatine kinase isozymes, Dev. Biol. 10:1.PubMedCrossRefGoogle Scholar
  30. 30.
    Fenichel, G. M., 1966, A histochemical study of developing human skeletal muscle, Neurology (Minneapolis) 16:741.Google Scholar
  31. 31.
    Fine, I. H., Kaplan, N. O., and Kuftinec, D., 1963, Developmental changes of mammalian lactic dehydrogenases, Biochemistry 2:116.CrossRefGoogle Scholar
  32. 32.
    Goodfriend, T. L., Sokol, D., and Kaplan, N. O., 1966, Control of synthesis of lactic acid dehydrogenases, J. Mol. Biol. 15:18.PubMedCrossRefGoogle Scholar
  33. 33.
    Guth, L., and Watson, P. K., 1967, The influence of innervation on the soluble proteins of slow and fast muscles of the rat, Exp. Neurol. 17:107.PubMedCrossRefGoogle Scholar
  34. 34.
    Hartshorne, D. J., and Perry, S. V., 1962, A chromatographic and electrophoretic study of sarco-plasm from adult and fetal rabbit muscles, Biochem. J. 85:171.PubMedGoogle Scholar
  35. 35.
    Hazlewood, C. F., and Nichols, B. L., 1969, Changes in muscle sodium, potassium, chloride, water and voltage during maturation in the rat: An experimental and theoretical study, Johns Hopkins Med. J. 125:119.PubMedGoogle Scholar
  36. 36.
    Herrmann, H., 1952, Studies of muscle development, Ann. N. Y. Acad. Sci. 55:99.PubMedCrossRefGoogle Scholar
  37. 37.
    Herskovitz, J., Masters, C. J., Wassarman, P. M., and Kaplan, N. O., 1967, On the tissue specificity and biological significance of aldolase C in the chicken, Biochem. Biophys. Res. Commun. 26:24.CrossRefGoogle Scholar
  38. 38.
    Heywood, S. M., Kennedy, D. S., and Bester, A. J., 1975, Stored myosin messenger in embryonic chick muscle, FEBS Lett. 53:69.PubMedCrossRefGoogle Scholar
  39. 39.
    Holmes, R. S., and Masters, C. J., 1967, The developmental multiplicity and isoenzyme status of rat esterases, Biochim. Biophys. Acta 146:138.PubMedGoogle Scholar
  40. 40.
    Hooft, C., de Caey, P., and Lambert, Y., 1966, Etude comparative de l’activité enzymatique du tissu musculaire de l’enfant normal et d’enfants atteints de dystrophie musculaire progressive aux différents stades de la maladie, Rev. Fr. Etud. Clin. Biol. 11:510.PubMedGoogle Scholar
  41. 41.
    Ilyin, V., 1965–1966, Central regulation of enzyme activity and synthesis in embryonal and adult mammalian tissues, Biol. Neonate 9:215.CrossRefGoogle Scholar
  42. 42.
    Iodice, A. A., Chin, S., Perker, S., and Weinstock, I. M., 1972, Cathepsins A, B, C, D and autolysis during development of breast muscle of normal and dystrophic chickens, Arch. Biochem. Biophys. 152:166.PubMedCrossRefGoogle Scholar
  43. 43.
    Jonxis, J. H. P., and Wadman, S. K., 1952, A fetal form of myoglobin, Nature (London) 169:884.CrossRefGoogle Scholar
  44. 44.
    Kagen, L. J., and Christian, C. L., 1966, Immunologic measurement of myoglobin in human adult and fetal skeletal muscle, Amer. J. Physiol. 211:655.Google Scholar
  45. 45.
    Kagen, L. J., and Freedman, A., 1973, Embryonic synthesis of myoglobin in vivo estimated by radioimmunoassay, Dev. Biol. 31:295.PubMedCrossRefGoogle Scholar
  46. 46.
    Kaplan, N. O., and Cahn, R. D., 1962, Lactic dehydrogenases and muscular dystrophy in the chicken, Proc. Natl. Acad. Sci. U.S.A. 48:123.CrossRefGoogle Scholar
  47. 47.
    Karpati, G., and Engel, W. K., 1968, Correlative histochemical study of skeletal muscle, Neurology (Minneapolis) 18:681.Google Scholar
  48. 48.
    Konigsberg, J. R., 1963, Clonal analysis of myo-genesis, Science 140:1273.PubMedCrossRefGoogle Scholar
  49. 49.
    Kuelh, W. M., and Adelstein, R. S., 1970, The absence of 3-methylhistidine in red, cardiac and fetal myosin, Biochem. Biophys. Res. Commun. 39:956.CrossRefGoogle Scholar
  50. 50.
    Lebherz, H. G., 1975, Ontogeny and regulation of fructose diphosphate aldolase isoenzymes in red and white skeletal muscles of the chick, J. Biol. Chem. 250:5976.PubMedGoogle Scholar
  51. 51.
    Luff, A. R., and Atwood, H. L., 1971, Changes in the sarcoplasmic reticulum and transverse tubular system in fast and slow skeletal muscles of the mouse during postnatal development, J. Cell Biol. 51:369.PubMedCrossRefGoogle Scholar
  52. 52.
    Man, N. T., Morris, G. E., and Cole, R. J., 1975, Gene activation during muscle differentiation and the role of non-histon chromosomal protein phosphorylation, Dev. Biol. 47:81.PubMedCrossRefGoogle Scholar
  53. 53.
    Marcaud-Raeber, L., 1959, Sur une nouvelle protéine myofibrillaire: La métamyosine. Observation et isolement, Bull. Soc. Chim. Biol. (Paris) 41:283.Google Scholar
  54. 54.
    Marcaud-Raeber, L., 1959, Hetérogénéité de la métamyosine, Bull. Soc. Chim. Biol. (Paris) 41:297.Google Scholar
  55. 55.
    Marcaud-Raeber, L., 1959, Comparaison de la métamyosine avec les autres protéines myofibrillaires, Bull. Soc. Chim. Biol. (Paris) 41:315.Google Scholar
  56. 56.
    Margreth, A., Di Mauro, S., Tartarini, A., and Salviati, G., 1971, Glycogen synthetase in developing and adult skeletal muscle, Biochem. J. 122:597.PubMedGoogle Scholar
  57. 57.
    Markert, C. L., and Møller, F., 1959, Multiple forms of enzymes: Tissues, ontogenetic, and species specific patterns, Proc. Natl. Acad. Sci. U.S.A. 45:753.PubMedCrossRefGoogle Scholar
  58. 58.
    Markert, C. L., and Ursprung, H., 1962, The ontogeny of isozyme pattern of lactate dehydrogenase in the mouse, Dev. Biol. 5:363.CrossRefGoogle Scholar
  59. 59.
    Masters, C. J., 1964, The developmental progression of ruminant lactate dehydrogenase, Biochim. Biophys. Acta 89:1.Google Scholar
  60. 60.
    Masters, C. J., 1968, The ontogeny of mammalian fructose-1,6-diphosphate aldolase, Biochim. Biophys. Acta 167:161.PubMedGoogle Scholar
  61. 61.
    Mavrenskaya, I. F., 1963, Histochemical study of Cholinesterase during development of somatic musculature in the human fetus, Fed. Proc. Fed. Amer. Soc. Exp. Biol. (Transl. Suppl.) 22:T597.Google Scholar
  62. 62.
    Mintz, B., and Baker, W. B., 1967, Normal mammalian muscle differentiation and gene control of isocitrate dehydrogenase synthesis, Proc. Natl. Acad. Sci. U.S.A. 58:592.PubMedCrossRefGoogle Scholar
  63. 63.
    Novak, M., Drummond, G. I., Skala, J., and Hahn, P., 1972, Developmental changes in cyclic AMP, protein kinase, Phosphorylase kinase, and Phosphorylase in liver, heart, and skeletal muscle in the rat, Arch. Biochem. Biophys. 150:511.PubMedCrossRefGoogle Scholar
  64. 64.
    Nwagwu, M., and Nana, M., 1974, Quantitative measurement of active polysomes in developing chick muscle, Dev. Biol. 41:1.PubMedCrossRefGoogle Scholar
  65. 65.
    Österman, J., Fritz, P. J., and Werntch, T., 1973, Pyruvate kinase isozymes from rat tissues. Developmental studies, J. Biol. Chem. 248:1011.PubMedGoogle Scholar
  66. 66.
    Perkoff, G. T., 1966, Evidence for a specific human fetal muscle heme protein, J. Lab. Clin. Med. 67:685.Google Scholar
  67. 67.
    Perrie, W. T., and Perry, S. V., 1970, An electro-phoretic study of the low molecular weight components of myosin, Biochem. J. 119:31.PubMedGoogle Scholar
  68. 68.
    Peter, J. B., Barnard, R. J., Edgerton, V. R., Gillespie, C. A., and Stempel, K. E., 1972, Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits, Biochemistry 11:2627.PubMedCrossRefGoogle Scholar
  69. 69.
    Piras, M. M., Staneloni, R., Leiderman, B., and Piras, R., 1972, Protein phosphokinases of chick muscle: Changes during embryonic development, FEBS Lett. 23:199.PubMedCrossRefGoogle Scholar
  70. 70.
    Radha, E., 1974, Embryonic differentiation in the nucleoside triphosphatase activities of myosin from the fast, slow and cardiac muscles of chick, Enzyme 18:327.PubMedGoogle Scholar
  71. 71.
    Sanger, J. W., Holtzer, S., and Holtzer, H., 1971, Effects of cytochalasin B on muscle cells in tissue culture, Nature (London) New Biol. 229:121.CrossRefGoogle Scholar
  72. 72.
    Schapira, F., 1965, Modification de spécificité de l’aldolase musculaire au cours de l’atrophie expérimentale, C. R. Soc. Biol. (Paris) 159:2189.Google Scholar
  73. 73.
    Schapira, F., 1966, Modification des isozymes de la creatine kinase musculaire au cours de l’atrophie, C. R. Acad. Sci. Ser. D (Paris) 262:2291.Google Scholar
  74. 74.
    Schapira, F., 1967, Type embryonnaire de l’aldolase musculaire chez le poulet myopathe, C. R. Acad. Sci. Sér. D (Paris) 264:2654.Google Scholar
  75. 75.
    Schapira, F., 1968, Ontogenetic evolution and pathogenic modifications of multiple forms of lactate dehydrogenase, creatine kinase and aldolase, in: Homologous Enzymes and Biochemical Evolution (U. V. Thoai and J. Roche, eds.), Gordon and Breach, New York.Google Scholar
  76. 76.
    Schapira, F., and Dreyfus, J. C., 1965, Différence de comportement au cours de l’atrophie des isozymes de la lactico-deshydrogénase musculaire selon l’espèce animale, Bull. Soc. Chim. Biol. (Paris) 47:2261.Google Scholar
  77. 77.
    Schapira, F., Dreyfus, J. C., and Allard, D., 1968, Les isozymes de la creatine kinase et de l’aldolase du muscle foetal et pathologique, Clin. Chim. Acta 20:439.PubMedCrossRefGoogle Scholar
  78. 78.
    Schapira, F., Dreyfus, J. C., and Schapira, G., 1965, Fetal-like patterns of lactic dehydrogenase and aldolase isozymes in some pathological conditions, Enzymol. Biol. Clin. (Basel) 7:98.Google Scholar
  79. 79.
    Shelley, H. J., 1960, Blood sugars and tissue carbohydrate in fetal and infant lambs and rhesus monkeys, J. Physiol. (London) 153:527.Google Scholar
  80. 80.
    Sreter, F., Holtzer, S., Gergely, J., and Holtzer, H., 1972, Some properties of embryonic myosin, J. Cell Biol. 55:586.PubMedCrossRefGoogle Scholar
  81. 81.
    Stave, U., 1964, Age dependent changes of metabolism, Biol. Neonate 6:128.CrossRefGoogle Scholar
  82. 82.
    Stave, U., 1965, Age dependent changes of metabolism: Influence of hypoxia on tissue enzyme patterns of newborn and adult rabbits, Biol. Neonate 8:114.CrossRefGoogle Scholar
  83. 83.
    Stave, U., 1967, Age dependent changes of metabolism: The effect of prolonged hypoxia upon tissue enzyme activities of newborn and adult rabbits, Biol. Neonate 11:310.CrossRefGoogle Scholar
  84. 84.
    Stave, U., 1967, Importance of proper substrate concentration for enzyme assays in tissue homo-genates for developmental studies, Enzymol. Biol. Clin. (Basel) 8:21.Google Scholar
  85. 85.
    Stave, U., and Armstrong, M. D., 1973, Tissue free amino acid concentrations in perinatal rabbits, Biol. Neonate 22:374–387.PubMedCrossRefGoogle Scholar
  86. 86.
    Stockdale, F. E., and O’Neill, M. C., 1972, Deoxyribonucleic acid synthesis, mitosis, and skeletal muscle differentiation, In Vitro 8:212.PubMedCrossRefGoogle Scholar
  87. 87.
    Takasu, T., and Hughes, B. P., 1966, Lactate. dehydrogenase isoenzymes in developing human muscle, Nature (London) 212:609.CrossRefGoogle Scholar
  88. 88.
    Tennyson, V. M., Brzin, M., and Soltwiner, P., 1972, The appearance of acetylcholinesterase in the myotome of the embryonic rabbit, J. Cell Biol. 51:703.CrossRefGoogle Scholar
  89. 89.
    Trayer, J. P., Harris, C. J., and Perry, S. V., 1968, 3-Methyl histidine and adult and fetal forms of skeletal muscle myosin, Nature (London) 217:452.Google Scholar
  90. 90.
    Turner, D. C., and Eppenberger, H. M., 1973, Developmental changes in creatine kinase and aldolase isoenzymes and their possible function in association with contractile elements, Enzyme 15:224.PubMedGoogle Scholar
  91. 91.
    Vesell, E. S., Philip, J., and Bearn, A. G., 1962, Comparative studies of the isozymes of lactic dehydrogenase in rabbit and man, J. Exp. Med. 116:797.PubMedCrossRefGoogle Scholar
  92. 92.
    Wahrmann, J. P., Luzzati, D., Gros, F., and Meyer, F., 1971, Evolution de quelques enzymes du métabolisme énergétique au cours du développement embryonnaire et post-natal des muscles squelettiques du rat, Biochimie 53:1023.PubMedCrossRefGoogle Scholar
  93. 93.
    Webb, J. N., 1974, Muscular dystrophy and muscle cell death in normal foetal development, Nature (London) 252:233.CrossRefGoogle Scholar
  94. 94.
    Wicha, M., and Stockdale, F. E., 1972, DNA-dependent DNA polymerases in differentiating muscle cells, Biochem. Biophys. Res. Commun. 48:1079.PubMedCrossRefGoogle Scholar
  95. 95.
    Wiggert, C., and Villee, C. A., 1964, Multiple molecular forms of malic and lactic dehydrogenase during development, J. Biol. Chem. 239:444.PubMedGoogle Scholar
  96. 96.
    Wirsen, C., and Larsson, K. S., 1964, Histochemical differentiation of skeletal muscle in fetal and newborn mice, J. Embryol. Exp. Morphol. 12:759.PubMedGoogle Scholar
  97. 97.
    Wolfson, R., Yakulis, V., Coleman, R. G., and Heller, P., 1967, Studies on fetal myoglobin, J. Lab. Clin. Med. 69:728.PubMedGoogle Scholar
  98. 98.
    Yaffe, D., 1971, Developmental changes preceding cell fusion during muscle differentiation in vitro, Exp. Cell Res. 66:33.CrossRefGoogle Scholar
  99. 99.
    Yellin, H., 1967, Neural regulation of enzymes in muscle fibers of red and white muscle, Exp. Neurol. 19:92.PubMedCrossRefGoogle Scholar
  100. 100.
    Young, U., 1969, The molecular basis of muscle contraction, Annu. Rev. Biochem. 38:913.PubMedCrossRefGoogle Scholar
  101. 101.
    Zalin, R. J., and Montague, W., 1975, Changes in cyclic AMP, adenylate cyclase and protein kinase levels during the development of embryonic chick skeletal muscle, Exp. Cell Res. 93:55.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Jean Claude Dreyfus
    • 1
  • Fanny Schapira
    • 1
  1. 1.Institute of Molecular PathologyUniversity of ParisParisFrance

Personalised recommendations