Advertisement

Maturation, Adaptation, and Tolerance

  • Uwe Stave

Abstract

The physiology of the newborn mammal is much more complex than the physiology of mature animals. By definition, physiology is the knowledge of functions and vital processes of the organism, its parts, and its organs. Neonatal physiology deals with a growing organism that has just suffered from a stressful parturition and is engaged in adjusting its vital functions to extrauterine life. The somatic and functional changes that predominate in this period of life are greater than those at any other time; therefore, neonatal physiology aims to establish a knowledge of the driving forces underlying these functional changes rather than to provide descriptions of functional levels or capacities.

Keywords

Perinatal Period Stagnant Hypoxia Birth Trauma Alarm Reaction Extrauterine Life 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbashova, Z. I., 1964, Cellular level of adaptation, in: Adaptation to the Environment: Handbook of Physiology (D. B. Dill, ed.), Sect. 4, pp. 37–54, American Physiological Society, Washington, D.C.Google Scholar
  2. 2.
    Beermann, W., 1963, Cytologische Aspekte der Informationsübertragung von den Chromosomen in das Cytoplasma, in: Induktion und Morphogenese, 13th Colloquium der Gesellschaft für Physiologische Chemie, pp. 64–97, Springer-Verlag, Berlin.Google Scholar
  3. 3.
    Dill, D. B. (ed.), 1964, Preface, Adaptation to the Environment: Handbook of Physiology, Sect. 4, American Physiological Society, Washington, D.C.Google Scholar
  4. 4.
    Flexner, L. B., Belknap, E. L., and Flexner, J. B., 1953, Biochemical and physiological differentiation during morphogenesis. XVI. Cytochrome oxidase and succinoxidase in the developing cerebral cortex and liver of the fetal guinea pig, J. Cell. Comp. Physiol. 42:151.CrossRefGoogle Scholar
  5. 5.
    Green Gard, O., 1969, Enzymic differentiation in mammalian liver, Science 163:891–895.CrossRefGoogle Scholar
  6. 6.
    Greencard, O., and Dewey, H. K., 1968, The developmental formation of liver glucose-6-phosphatase and reduced nicotinamide adenine dinucleotide phosphate dehydrogenase in fetal rats treated with thyroxine, J. Biol. Chem. 243:2745–2749.Google Scholar
  7. 7.
    Green Gard, O., and Dewey, H. K., 1970, The premature deposition or lysis of glycogen in livers of fetal rats injected with hydrocortisone or glucagon, Dev. Biol. 21:452–461.CrossRefGoogle Scholar
  8. 8.
    Hadorn, H., 1958, Role of genes in developmental processes, in: The Chemical Basis of Development (W. D. McElroy and B. Glass, eds.), pp. 779–791, The Johns Hopkins Press, Baltimore.Google Scholar
  9. 9.
    Herrmann, H., and Tootle, M. L., 1964, Specific and general aspects of the development of enzymes and metabolic pathways, Physiol. Rev. 44:289–371.PubMedGoogle Scholar
  10. 10.
    Jacquot, R. L., Plas, C., and Nagel, J., 1973, Two examples of physiological maturations in rat fetal liver, Enzyme 15:296–303.PubMedGoogle Scholar
  11. 11.
    Jílek, L., Trávníčková, E., and Trojan, S., 1970, Characteristic metabolic and functional responses to oxygen deficiency in the central nervous system, in: Physiology of the Perinatal Period (U. Stave, ed), pp. 987–1041, Appleton-Century-Crofts, New York.Google Scholar
  12. 12.
    Karlson, P., 1963, Morphogense und Metamorphose der Insekten, in: Induktion und Morphogenese, 13th Colloquium der Gesellschaft für Physiologische Chemie, pp. 101–122, Springer-Verlag, Berlin.Google Scholar
  13. 13.
    Liggins, G. C., and Howie, R. N., 1974, The prevention of RDS by maternal steriod therapy, in: Modern Perinatal Medicine (L. Gluck, ed.), pp. 415–424, Year Book Publishers, Chicago.Google Scholar
  14. 14.
    Linneweh, F., 1958, Funktion und Lebensalter, Muench. Med. Wochenschr. 100:616–618.Google Scholar
  15. 15.
    Linneweh, F., 1959, Die Faktoren des postnatalen Funktionswandels, in: Die physiologische Entwicklung des Kindes (F. Linneweh, ed.), pp. 1 and 2, Springer-Verlag, Berlin.Google Scholar
  16. 16.
    Linneweh, F., and Stave, U., 1960, Über Anpassungsvorgänge nach der Geburt, Klin. Wochenschr. 38:1–5.PubMedCrossRefGoogle Scholar
  17. 17.
    McCance, R. A., 1959, The maintenance of stability in the newly born. I. Chemical exchange, Arch. Dis. Child. 34:361–370.PubMedCrossRefGoogle Scholar
  18. 18.
    McCance, R. A., 1961, Characteristics of the newly born, in: Somatic Stability in the Newly Born (G. E. W. Wolstenholme and M. O’Connor, eds.), pp. 1–4, Churchill, London.Google Scholar
  19. 19.
    Moog, F., 1965, Enzyme development in relation to functional differentiation, in: The Biochemistry of Animal Development (R. Weber, ed.), Vol. 1, pp. 307–365, Academic Press, New York.Google Scholar
  20. 20.
    Moog, F., 1970, Enzyme development and functional differentiation in the fetus, in: Fetal Growth andDevelopment (H. A. Waisman and G. Kerr, eds.), pp. 29–48, McGraw-Hill Book Co., New York.Google Scholar
  21. 21.
    Myers, R. E., 1972, Two patterns of perinatal brain damage and their conditions of occurrence, Amer. J. Obstet. Gynecol. 112: 246–276.Google Scholar
  22. 22.
    Prosser, C. L., 1964, Perspectives of adaptation: Theoretical aspects, in: Adaptation to the Environment: Handbook of Physiology (D. B. Dill, ed.), Sect. 4, pp. 11–25, American Physiological Society, Washington, D.C.Google Scholar
  23. 23.
    Schäfer, K. H., 1952, Die Geburt als Eingriff auf den kindlichen Organismus, Monatsschr. Kinderheilkd. 101:158–160.Google Scholar
  24. 24.
    Schäfer, K. H., 1959, Über den Anteil der Stressreaktion am Funktionswandel der ersten Lebenszeit, in: Die physiologische Entwicklung des Kindes (F. Linneweh, ed.), pp. 11–17, Springer-Verlag, Berlin.Google Scholar
  25. 25.
    Schmidt, H., 1965, Untersuchungen zur Pathogenese und Ätiologie der geburtstraumatischen Hirnschädigungen Früh- und Reifgeborener, G. Fischer, Stuttgart.Google Scholar
  26. 26.
    Schwartz, P., 1961, Birth Injuries of the Newborn, pp. 14–85, S. Karger, Basel.Google Scholar
  27. 27.
    Sekeris, C. E., 1967, Wirkung der Hormone auf den Zellkern, in: Wirkungsmechanismen der Hormone (P. Karlson, ed.), pp. 126–157, Springer-Verlag, Berlin.Google Scholar
  28. 28.
    Selye, H., 1950, The Physiology and Pathology of Exposure to Stress, Acta, Montreal.Google Scholar
  29. 29.
    Selye, H., 1956, What is stress ?, Metabolism 5:525–530.PubMedGoogle Scholar
  30. 30.
    Stave, U., 1956, Beitrag zur funktionellen Reifung der Nierentubuli: Die Phenolrot-Ausscheidung im Säuglingsalter, Z. Kinderheilkd. 77:554–562.PubMedCrossRefGoogle Scholar
  31. 31.
    Stave, U., and Wolf, H., 1970, Metabolic effects in hypoxia neonatorum, in: Physiology of the Perinatal Period (U. Stave, ed.), pp. 1043–1088, Appleton-Century-Crofts, New York.Google Scholar
  32. 32.
    Tomkins, G. M., and Thompson, E. B., 1967, Hormonal control of protein synthesis at the trans-lational level, in: Wirkungsmechanismen der Hormone (P. Karlson, ed.), pp. 107–125, Springer-Verlag, Berlin.Google Scholar
  33. 33.
    Waddington, C. H., 1940, Organizers and Genes, Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Uwe Stave
    • 1
  1. 1.Mailman Center for Child Development and Department of PediatricsUniversity of Miami School of MedicineMiamiUSA

Personalised recommendations